
Mühendislik Fakültesi

Bilgisayar Müh. Bölümü

BİLGİSAYAR
MİMARİSİ ve
ORGANİZASYONU

Ders Kodu : BM303

L+T+P : 0-3-1

AKTS : 4 Dersi Veren :

Prof. Dr. Ahmet Akbaş

Open in Google Trans

13.ncü HAFTA DERSİ
Paralel Çalışma ve

Performans

https://translate.google.com/?um=1&ie=UTF-8&hl=en&client=tw-ob#auto/en/Gereksinimleri%20belirlemeye%20y%C3%B6nelik%20olarak%20bir%20sistemi,%20s%C4%B0stem%20par%C3%A7as%C4%B1n%C4%B1%20ya%20da%20s%C3%BCreci%20analiz%20eder,%20alternatifleri%20m%C3%BChendislik%20y%C3%B6ntemlerini%20kullanarak%20k%C4%B1yaslar,%20en%20uygun%20%C3%A7%C3%B6z%C3%BCm%C3%BC%20tasarlar.

13.ncü HAFTA DERSİ

1- Bilgisayar Sistemlerine Giriş (Fonksiyonel Birimler, Sistem Mimarisi, Performans, Teknolojik Arka Plan);

2- Programcı Bakış Açısıyla bir Sistem Turu;

3- Bilgisayar Sistemlerinde Bilginin (information) Temsili ve Manüplasyonu;

4- Komut Seti Mimarisi, Programların Makine Düzeyinde Temsili-I (RISC ve CISC mimariler);

5- Komut Seti Mimarisi, Programların Makine Düzeyinde Temsili-II (IA-32 ve x86-64 mimarileri);

6- İşlemci ve Giriş/Çıkış Birimleri Arasında Veri Transferi (Program Kontrollü G/Ç, Kesmeli G/Ç);

7- Yazılım (Program Hazırlama ve Çalıştırma Süreçleri, C ve Assembly Dilleri Arasındaki Etkileşim, İşletim Sistemleri);

8- İşlemci (CPU) Birimi (Fonksiyonel Birimler, Komut Getirme vr Yürütme Adımları, Kontrol Sinyalleri, HDL);

9- Program Performansının Optimizasyonu (Komut Düzeyinde Paralelleme, Eş-zamanlılık, Süperskaler İşlemciler);

10- Giriş/Çıkış Organizasyonu (Yol Yapısı, Yol Hakimliği, Arayüz Devreleri, Ara-bağlantı Standartları);

11- Bellek Sistemi (Temel Bellek Devreleri, Ana Bellek Organizasyonu, Bellek Teknolojileri);

12- Aritmetik (Tam Sayı ve Kayan Noktalı Sayılar için Aritmetik İşlem Devreleri);

13- Paralel Çalışma ve Performans (Çoklu İş Parçaları, Vektörel Süreçler, Paylaşımlı Bellekli Çoklu İşlemciler);

14- ARM İşlemcili SoC Örnekleri.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

Ders İçeriği :

• Çoklu iş
 parçacığı
• Genel amaçlı ve
 grafik
 işlemcilerde
 vektör işleme
• Paylaşılan
 bellekli çoklu
 işlemciler
• Paylaşılan
 veriler için
 tutarlı önbellek
• Dağıtılmış
 bellekli
 sistemlerde
 mesaj geçirme
• Paralel
 programlama
• Performansın
 matematiksel
 modellemesi

DONANIMSAL ÇOKLU İŞ PARÇACIĞI

ENG. TERMINOLOGY
& ACRONYMS

Her proses, program içinde bağımsız bir yürütme yoluna
karşılık gelen bir veya daha çok iş parçacığı (thread) içerir.

İş parçacıklarının durumu, program sayacı ve diğer
işlemci kaydedicilerinin içeriği ile belirlenir. İki veya daha
fazla iş parçacığı, farklı işlemcilerde çalışabileceği gibi; bir
programın aynı bölümünü farklı veriler üzerinde yürütme
veya bir programın farklı bölümlerini yürütmek üzere de

atanabilir. Farklı programların iş parçacıkları da farklı
işlemcilerde yürütülebilir. Tek bir programın parçası olan
tüm iş parçacıkları aynı bellek adres alanında çalışır ve

aynı işlemle ilişkilendirilir.

Performans optimizasyonu için 9.ncu hafta dersinde,
program yürütme süresini azaltan boru hattı ve süperskalar

işlemlerini; 11.nci hafta dersinde de, komut ve verilere
erişim süresini azaltan önbellek kullanımını görmüştük. Bu

derste, performansı daha da iyileştirmek için çoklu iş
parçacığı (multi-threading), vektör işleme ve çoklu işleme
(multi-processing) yöntemlerini ele alacağız. Bu yöntemler,
genel amaçlı bilgisayarlarda kullanılan çok çekirdekli işlemci
yongalarında uygulanmaktadır. Bu yöntemlerle performans
artışı, kaynak kullanımı iyileştirilerek ve paralel olarak daha

fazla işlem gerçekleştirilerek sağlanır.

İşletim sistemi (OS), programlar arasında bağlam geçişleri
gerçekleştirerek aynı işlemcinin farklı programlar için çoklu

görev (multitasking) yapmasını sağlar. Bir program OS
tarafından, mevcut yürütme durumu bilgisiyle beraber bir

proses (işlem) olarak kabul edilir. İşletim sistemi bu
kapsamda her prosesle birlikte ona tahsis edilen bellek ve
diğer kaynak bilgilerini tutar. Örneğin bilgisayarda açılan

Web tarayıcı, kelime işlemci ve müzik programı gibi her bir
uygulamayı ayrı bir prosesle ilişkilendirebilir.

Bu derste, aynı işlemcide çalışan ve her biri tek bir iş
parçacığına sahip olan iki veya daha fazla programla

oluşan çoklu görevlere odaklanacağız. İşletim sistemi,
engellenmemiş proseslerden birini zaman dilimleme

yöntemi ile seçerek kısa bir süre çalışmasına izin verir. Bu
sürede yalnızca seçilen prosese karşılık gelen iş parçacığı

etkindir. İşletim sistemi bu süre sonunda bağlam değiştirir
ve bir sonraki zaman diliminde ilgili iş parçacığını etkin
hale getiren farklı bir prosesi seçer. Bunun için, işletim

sisteminde bir zamanlayıcı kesme hizmet rutinini çağırır.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

DONANIMSAL ÇOKLU İŞ PARÇACIĞI

ENG. TERMINOLOGY
& ACRONYMS

Böylece, önbellek ıskalaması gibi bir olayda başka bir iş
parçacığına geçmeden önce bir iş parçacığının daha çok

sayıda komutu yürütülebilir.

İş parçacıkları arasında geçiş yapmanın bir alternatifi de,
belirli olaylarda her komut alındıktan sonra geçiş

yapmaktır. Buna ince taneli (fine grained) veya iç içe
geçmiş (interleaved) çoklu iş parçacığı denir. Burada

amaç işlemci verimini artırmaktır. Her yeni komut, diğer iş
parçacıklarından gelen öncüllerden bağımsızdır.

Diğer taraftan, veri bağımlılığı nedeniyle oluşan
duraklamaları azaltılmalıdır. Bu kapsamda, birden çok iş
parçacığından gelen komutlar iç içe geçirilerek verim
artırılabilir. Bu durumda belirli bir iş parçacığının tüm
komutlarını tamamlaması daha uzun sürer. Intel IA-32

mimarisine sahip işlemcilerde yalnızca iki iş parçacığı için
sahip bir iç içe geçmiş çoklu iş parçacığı biçimi kullanılır

İşlemci, birden fazla iş parçacığıyla çalışmak için, birden çok
sayıda program sayacı ve özdeş kaydedici kümesi kullanır.

Her kaydedici kümesi farklı bir iş parçacığına tahsis edilebilir.
Böylece, bir bağlam geçişi esnasında kaydedici içerikleri

kendi üzerine kaydedilerek geri yüklemede zaman kaybının
önüne geçilir. Buna donanımsal çoklu iş parçacığı denir.

Birden çok kaydedici kümesi, bağlam geçişini basitleştirir ve
hızlandırır. Sonraki komutları almak ve yürütmek için farklı

bir kaydedici kümesi kullanmak üzere sadece işlemcideki bir
donanım işaretçisi değiştirilir. Farklı bir iş parçacığına geçiş,

bir saat döngüsü içinde tamamlanabilir. Önceki iş
parçacığının durumu kendi kaydedici kümesinde saklanır.

Farklı bir iş parçacığına geçiş, sabit bir zaman aralığının
sonunda değil, belirli bir olayın meydana gelmesiyle

herhangi bir anda da tetiklenebilir. Örneğin, etkin iş parçacığı
için bir Load veya Store komutu yürütülürken bir önbellek

ıskalaması meydana gelebilir. İşlemci arada geçen bu süreyi
değerlendirmek için, daha yavaş olan ana belleğe erişirken

duraklamak yerine, daha hızla farklı bir iş parçacığına
geçerek diğer komutları alıp yürütmeye devam edebilir.

Buna kaba taneli (coarse grained) çoklu iş parçacığı denir

Vektör İşleme: Birden çok sayıda hesaplama gerektiren
bir uygulama, tamsayı veya kayan noktalı sayılar dizisi gibi

veri vektörleri üzerinde işlemler gerçekleştirmek için
döngüler kullanan programlar içerir.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

VEKTÖR (SIMD) İŞLEME

ENG. TERMINOLOGY
& ACRONYMS

Vektör kaydedicilerinin nasıl kullanıldığını gösteren tipik
vektör komutu örnekleri aşağıda verilmiştir. OP kodunun

her veri öğesinin boyutunu belirten bir S eki içerdiği
varsayılırsa, bir vektördeki öğe sayısı, L, belirlenir. Belleğe
erişen komutların, etkin adres hesaplanırken geleneksel

bir kaydedicinin içerikleri kullanılır. Vektör komutu

Vj ve Vk vektör kaydedicilerindeki öğeleri kullanarak L
toplamını hesaplar ve elde edilen toplamları Vi'ye

yerleştirir. Diğer aritmetik işlemleri gerçekleştirmek için
benzer komutlar kullanılır.

Bir vektör kaydedici ile bellek arasında birden fazla veri
öğesini aktarmak için özel komutlara ihtiyaç vardır.

komutunun, X + [Rj] bellek konumundan başlayan L
ardışık öğenin vektör kaydedici Vi'ye yükler. Bunun gibi,

komutunun, vektör kaydedici Vi'nin içeriğinin bellekte L
ardışık öğe olarak depolanmasını sağlar.

Bir işlemci bu tür bir döngüdeki komutları yürüttüğünde,
işlemler vektör elemanları üzerinde tek tek gerçekleştirilir.
Sonuç olarak, tüm vektör elemanlarını işlemek için birçok

komutun yürütülmesi gerekir. Bunun için işlemci birden fazla
ALU içerecek şekilde geliştirilebilir.

Böyle bir işlemcide, tek bir komut kullanarak birden fazla
veri öğesi üzerinde paralel işlem yapmak mümkündür. Bu

komutlara tek komutla çoklu veri (SIMD) işleme veya vektör
komutları denir. Bunlar paralel gerçekleştirilen işlemlerin

bağımsız olması halinde kullanılabilir: veri paralelliği.

Vektör komutları için veriler, her biri birkaç veri öğesini
tutabilen kaydedicilerde tutulur. Her vektör kaydedicisindeki
öğe sayısına (L) vektör uzunluğu denir. Bu birden fazla ALU
üzerinde paralel olarak gerçekleştirilebilecek işlem sayısıdır.

Aynı vektör kaydedicileri kullanılarak farklı boyutlardaki veri
öğeleri için vektör komutları sağlanırsa, L değişebilir.

Örneğin, Intel IA-32 mimarisi, L = 2'den L = 16'ya kadar
değişen vektör uzunlukları için komutlar tarafından

kullanılan 128 bitlik vektör kaydedicilere sahiptir ve bu da 64
bitten 8 bite kadar değişen boyutlardaki tam sayı veri

öğelerine karşılık gelir.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

VEKTÖRLEŞTİRME

ENG. TERMINOLOGY
& ACRONYMS

Döngüyü vektörleştirmek için derleyici, döngüdeki her geçişteki
hesaplamanın diğer geçişlerden bağımsız olduğunu ve aynı

işlemin birden fazla eleman üzerinde aynı anda
gerçekleştirilebileceğini kabul etmelidir. Basitleştirmek için, geçiş

sayısı olan N'nin vektör uzunluğu olan L'ye eşit olarak
bölünebildiğini varsayalım. Döngünün başındaki Load, Add ve

Store komutları, aynı anda L eleman üzerinde işlem yapan karşılık
gelen vektör komutlarıyla değiştirilir.

Sonuç olarak, vektörleştirilmiş döngü dizilerdeki tüm verileri
işlemek için yalnızca N/L geçişi gerekir. Döngüdeki her geçişte L

eleman işlendiğinde, R2, R3 ve R4 kaydedicilerindeki adres
işaretçileri 4L artırılır ve R5 kaydedicisindeki sayım L azaltılır.

Yüksek seviyeli dilde yazılmış bir kaynak
programında, tam sayı veya kayan nokta sayılarından
oluşan dizilerde işlem yapan döngülerin, her geçişte

gerçekleştirilen işlemleri diğer geçişlerden
bağımsızsa vektörleştirilebilir. Vektör komutlarının
kullanılması, yürütülmesi gereken komut sayısını
azaltır ve işlemlerin birden fazla ALU'da paralel

olarak gerçekleştirilmesini sağlar. Bir vektörleştirici
derleyici, çok karmaşık değillerse bu tür döngüleri

tanıyabilir ve vektör komutları üretebilir.

Döngünün vektörleştirilmesi, aşağıdaki C-kodlu basit
örnekle gösterilmiştir. A, B ve C dizileri için bellekteki
başlangıç konumlarının R2, R3 ve R4 kaydedicilerinde
olduğu varsayılırsa, derleyici, geleneksel makine dili

komutlarını kullanarak yandaki şekilde gösterilen
döngüyü üretebilir. Döngü gövdesinde dokuz komut
vardır, dolayısıyla döngüden N geçiş için toplam 9N

komut yürütülür.

Ref. [1]

Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

VEKTÖRLEŞTİRME

ENG. TERMINOLOGY
& ACRONYMS

Grafik İşleme Birimleri: Bilgisayar grafikleri
için işlemeye yönelik artan talepler, grafik

işleme birimi (GPU) adı verilen özel
yongaların geliştirilmesine yol açmıştır.

GPU'ların temel amacı, video oyunları gibi
yüksek çözünürlüklü üç boyutlu grafiklerde

ihtiyaç duyulan çok sayıda kayan nokta
hesaplamasını hızlandırmaktır. Bu

hesaplamalarda yer alan işlemler genellikle
bağımsız olduğundan, büyük bir GPU

yongası, bunları paralel olarak
gerçekleştirmek için kayan nokta ALU'larına

sahip yüzlerce basit çekirdek içerir.

GPU yongası ve bunun için ayrılmış bellek bir
video kartında bulunur. Böyle bir kart, PCIe

standardı gibi bir ara bağlantı standardı
kullanılarak bir ana bilgisayarın genişletme
yuvasına takılır. GPU yongasındaki işleme
çekirdekleri için küçük bir program yazılır.
Çok sayıda çekirdek bu programı paralel

olarak yürütür.

Vektörleştirilmiş döngü aşağıdaki şekilde gösterilmiştir. Derleyicinin, Add
komutlarında doğrudan operant olarak verilen ifade için 4L değerini

hesapladığını varsayıyoruz. Döngü gövdesinde hala dokuz komut vardır,
ancak geçiş sayısı artık N/L olduğundan, yürütülmesi gereken toplam

komut sayısı yalnızca 9N/L'dir.

Vektörize edilebilir döngüler, bilgisayar grafikleri ve dijital sinyal işleme
gibi uygulamalar için programlarda bulunur. Bu tür döngüler, birkaç veri
öğesi üzerinde aynı anda gerçekleştirilebilen birçok bağımsız hesaplama

yapar. Bir uygulama için yürütme süresinin büyük bir kısmıda bu tür
döngüler yürütülüyorsa, bu döngüler vektörleştirilerek toplam yürütme
süresi önemli ölçüde azaltılabilir. Performans iyileştirmesi, paralel olarak
çalışabilen ALU sayısını belirleyen vektör uzunluğu L ile sınırlanır. Daha

yüksek performans, başka tür bir vektör işleme desteği ile uygulanabilir.

Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

GRAFİK İŞLEME BİRİMLERİ (GPU)

ENG. TERMINOLOGY
& ACRONYMS

Derleyici ve ilgili yazılım araçları, son nesne programını ana
bilgisayar ve GPU çipi için makine komutlarına çevrilen

bölümlere otomatik olarak böler. Kütüphane rutinleri, GPU
tabanlı bir video kartının ayrılmış belleğinde depolama alanı
tahsis etmek ve ana bellek ile ayrılmış bellek arasında veri
aktarmak için sağlanır. Ayrıca, herhangi bir satıcıdan GPU
yongaları içeren sistemler için bir programlama çerçevesi
olarak endüstri tarafından OpenCL adlı açık bir standart

önerilmiştir .

Çekirdekler aynı komutları yürütür, ancak farklı veri
öğeleri üzerinde çalışır. Ayrı bir kontrol programı, ana

bilgisayarın genel amaçlı işlemcisinde çalışır ve
gerektiğinde GPU programını çağırır.

GPU hesaplaması başlamadan önce, ana bilgisayar
programı önce GPU programının ihtiyaç duyduğu verileri
ana bellekten ayrılmış GPU belleğine aktarır. Hesaplama

tamamlandıktan sonra, ayrılmış bellekteki sonuç çıktı
verileri ana belleğe geri aktarılır.

Bir GPU çipindeki işlem çekirdekleri, genel amaçlı bir
işlemcide kullanılanlardan farklı olan özel bir komut
setine ve donanım mimarisine sahiptir. Bir örnek,

NVIDIA’nın GPU çiplerindeki çekirdekler için kullandığı
Hesaplama Birleştirilmiş Aygıt Mimarisi'dir (Compute
Unified Device Architecture, CUDA). Genel amaçlı bir

işlemci ve bir GPU içeren programların yazılmasını
kolaylaştırmak için NVIDIA tarafından CUDA C adı verilen
bir C programlama dili uzantısı geliştirilmiştir. Bu uzantı,
GPU çipindeki işlem çekirdekleri tarafından yürütülen

işlevleri etiketlemek için kullanılan özel anahtar
sözcüklerle tek bir programın C dilinde yazılmasını sağlar.

Paylaşımlı Bellekli Çok İşlemcili Sistemler: Çok işlemcili bir
sistem, aynı anda bağımsız görevleri yürütebilen bir dizi

işlemciden oluşur. Bu görevlerin ayrıntı düzeyi önemli ölçüde
değişebilir. Bir görev, bir döngüden bir geçiş için birkaç komut

veya bir alt rutinde yürütülen binlerce komut içerebilir.

Paylaşımlı bellekli çok işlemcili sistemde, tüm işlemciler aynı
belleğe erişebilir. Farklı işlemcilerde çalışan görevler, aynı

adresleri kullanarak bellekteki paylaşımlı değişkenlere
erişebilir. Paylaşımlı belleğin boyutu büyük olabilir. Tek bir

modülde büyük bir bellek uygulamak, birçok işlemcinin
belleğe aynı anda erişmek için istekte bulunması durumunda

bir darboğaz yaratır.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

BELLEK PAYLAŞIMLI ÇOK İŞLEMCİLİ SİSTEMLER

ENG. TERMINOLOGY
& ACRONYMS

Bu sorun, belleği birden fazla modüle dağıtarak
hafifletilir, böylece farklı işlemcilerden gelen aynı anda

gelen isteklerin, adreslerine bağlı olarak farklı bellek
modüllerine erişme olasılığı daha yüksek olur.

Bir bağlantı ağı, herhangi bir işlemcinin paylaşımlı
belleğin bir parçası olan herhangi bir modüle erişmesini
sağlar. Bellek modülleri işlemcilerden fiziksel olarak ayrı

tutulduğunda, belleğe erişim isteklerinin tümü ağdan
geçmek zorundadır ve bu da gecikmeye neden olur.

Şekil böyle bir düzenlemeyi göstermektedir.

İşlemcilerden bellek modüllerine erişim için aynı ağ
gecikmesine sahip böyle bir sisteme Tekdüzen Bellek Erişimi

(Uniform Memory Accsess, UMA) çoklu işlemcisi denir.
Gecikme tekdüze olsa da, birçok işlemci ve bellek modülünü

birbirine bağlayan bir ağ için büyük olabilir.

Daha iyi performans için, her işlemciye yakın bir bellek modülü
yerleştirmek tercih edilir. Sonuç, her biri bir işlemci ve bir

bellek modülünden oluşan bir düğüm koleksiyonudur.
Düğümler daha sonra Şekildeki gibi ağa bağlanır. Bir işlemci
yerel belleğine erişim isteğinde bulunduğunda ağ gecikmesi
önlenir. Ancak, uzak bir bellek modülüne erişim isteği ağdan

geçmelidir. Paylaşılan belleğin yerel ve uzak bölümlerine erişim
için gecikmelerdeki fark nedeniyle, bu tür sistemlere Non-
Uniform Memory Accsess (NUMA) çoklu işlemcileri denir.

Ref. [1]Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

BELLEK PAYLAŞIMLI ÇOK İŞLEMCİLİ SİSTEMLER / Arabağlantı Ağları

ENG. TERMINOLOGY
& ACRONYMS

Arabağlantı ağı, sistemdeki herhangi bir düğüm çifti
arasında bilgi aktarımına izin vermelidir. Ağ ayrıca bir
düğümden diğer birçok düğüme bilgi yayınlamak için
de kullanılabilir. Ağdaki trafik, isteklerden (okuma ve

yazma gibi) ve veri aktarımlarından oluşur.

Belirli bir ağın uygunluğu maliyet, bant genişliği, etkili
çıktı ve uygulama kolaylığı açısından değerlendirilir.

Bant genişliği terimi, bir iletim bağlantısının veri
aktarma kapasitesini ifade eder ve saniyede bit veya

bayt olarak ifade edilir. Etkin çıktı, gerçek veri aktarım
hızıdır. Bu hız, mevcut bant genişliğinden daha azdır

çünkü belirli bir bağlantı, veri aktarımını koordine eden
kontrol bilgilerini de taşımalıdır.

Ağ üzerinden bilgi aktarımı genellikle sabit uzunlukta
ve belirtilen formatta paketler şeklinde gerçekleşir.

Örneğin, bir okuma isteği muhtemelen bir işlemciden
bir bellek modülüne gönderilen tek bir pakettir. Paket,
kaynak ve hedef için düğüm tanımlayıcılarını, okunacak

konumun adresini ve ne tür bir okuma işleminin
gerektiğini belirten bir komut alanını içerir.

Bir bellek modülüne bir kelime yazan bir yazma isteği, yazılacak
verileri içeren tek bir paket olma olasılığı da yüksektir. Öte

yandan, bir okuma yanıtı, veri aktarımı için birkaç paket
gerektiren tüm bir önbellek bloğunu içerebilir.

İdeal olarak, tam bir paket, ağdaki herhangi bir düğüm veya
anahtarda bir saat döngüsünde paralel olarak işlenir. Bu, birçok

kabloyu içeren geniş bağlantılara sahip olmak anlamına gelir.
Ancak, maliyeti ve karmaşıklığı azaltmak için bağlantılar

genellikle önemli ölçüde daha dardır. Bu gibi durumlarda, bir
paket, her biri bir saat döngüsünde iletilebilen daha küçük
parçalara bölünmelidir. Çoklu işlemcilerde yaygın olarak
kullanılan ara bağlantı ağı çeşitleri aşağıda açıklanmıştır.

Yol (bus): Bilgi aktarımı için tek bir paylaşımlı yol sağlayan bir
dizi hatdır. Yollar, genellikle UMA çoklu işlemcilerinde bir dizi

işlemciyi birkaç paylaşımlı bellek modülüne bağlamak için
kullanılır. Herhangi bir anda birçok olası istekçiden yalnızca

birine yolun kullanımına izin verilmesini sağlamak için tahkim
gereklidir. Yol, yola erişim için çekişme ve birçok işlemci

bağlandığında elektriksel yüklemenin neden olduğu artan
yayılma gecikmeleri nedeniyle nispeten az sayıda işlemci için

uygundur.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

BELLEK PAYLAŞIMLI ÇOK İŞLEMCİLİ SİSTEMLER / Arabağlantı Ağları

ENG. TERMINOLOGY
& ACRONYMS

Basit bir yol, geçerli istek için yanıt sağlanana kadar
yolda yeni bir isteğin görünmesine izin vermez. Ancak,
yanıt gecikmesi yüksekse, yolun önemli bir boşta kalma
süresi olabilir. Bir isteğin ve karşılık gelen yanıtının ayrı

olaylar olarak ele alındığı bölünmüş işlem yolunu
kullanarak daha yüksek performans elde edilebilir.
Bunlar arasında başka aktarımlar da gerçekleşebilir.

Birden fazla işlemcinin belleğe okuma istekleri yapması
gereken bir durumu düşünün. Tahkim (yol hakemliği),

isteği için veri yolunun kullanımına izin verilecek ilk
işlemciyi seçmek için kullanılır. İstek yapıldıktan sonra,

yolu boşta bırakmak yerine isteğini yapmak üzere ikinci
bir işlemci seçilir. Bu isteğin farklı bir bellek modülüne
yapıldığı varsayılırsa, iki okuma erişimi paralel ilerler.

Hiçbir modül erişimini tamamlamamışsa, isteğini
yapmak üzere üçüncü bir işlemci seçilir ve bu böyle

devam eder. Sonunda, bir bellek modülü okuma
erişimini tamamlar. Verileri istekte bulunan işlemciye

aktarmak için yolu kullanma izni verilir. Diğer modüller
erişimlerini tamamladıkça, yol yanıtlarını aktarmak için

kullanılır.

Her istek ile karşılık gelen yanıtı arasındaki gerçek zaman
uzunluğu, bellekle farklı işlemler için istekler ve yanıtlar,

mevcut bant genişliğinin verimli bir şekilde kullanılması için
yolda iç içe geçirildiğinden değişebilir.

Bölünmüş işlem yolu daha karmaşık bir yol protokolü gerektirir.
Karmaşıklığın ana kaynağı, her yanıtı karşılık gelen isteğiyle
eşleştirme gereksinimidir. Bu genellikle yolda görünen her
istekle benzersiz bir etiket ilişkilendirilerek ele alınır. Daha

sonra her yanıt, kaynağın orijinal isteğiyle eşleştirilebilmesi için
uygun etiketle birlikte görüntülenir.

Ring (Halka): Düğümler arasında noktadan noktaya
bağlantılarla bir halka ağı oluşturulur. Şekilde tek bir halka

gösterilmiştir. Uzun tek bir halka, herhangi iki düğüm
arasındaki iletişim için yüksek ortalama gecikmeyle sonuçlanır.

Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

BELLEK PAYLAŞIMLI ÇOK İŞLEMCİLİ SİSTEMLER / Arabağlantı Ağları

ENG. TERMINOLOGY
& ACRONYMS

Bu yüksek gecikme iki farklı şekilde azaltılabilir.
Düğümleri zıt yönde bağlamak için ikinci bir halka

eklenebilir. Ortaya çıkan çift yönlü halka,
ortalama gecikmeyi yarıya indirir ve bant

genişliğini iki katına çıkarır. Ancak, iletişimlerin
işlenmesi daha karmaşıktır.

Başka bir yaklaşım, halkaların bir hiyerarşisini
kullanmaktır. Şekilde iki seviyeli bir hiyerarşi

gösterilmiştir. Üst seviye halka, alt seviye halkaları
birbirine bağlar. Alt seviye halkalardaki herhangi

iki düğüm arasındaki iletişim için ortalama
gecikme, bu düzenlemeyle azaltılır. Aynı alt seviye

halkadaki düğümler arasındaki transferler, üst
seviye halkayı geçmek zorunda değildir. Farklı alt

seviye halkalardaki düğümler arasındaki
transferler, üst seviye halkanın bir kısmında bir

geçişi içerir.

Hiyerarşik şemanın dezavantajı, farklı alt seviye
halkalardaki birçok düğümün birbirleriyle sık sık
iletişim kurması durumunda üst seviye halkanın

bir darboğaz haline gelebilmesidir.

Crossbar (Çapraz çubuk): Çapraz çubuk, ağa bağlı herhangi bir birim
çifti arasında doğrudan bağlantı sağlayan bir ağdır. Genellikle UMA
çoklu işlemcilerinde işlemcileri bellek modüllerine bağlamak için
kullanılır. Aynı hedef birden fazla isteğin hedefi değilse birçok eş
zamanlı aktarıma olanak tanır.
Örneğin, Şekildeki gibi bir
anahtar koleksiyonundan
oluşan bir çapraz çubuk
kullanarak yukarıda sunulan
UMA dizenindeki yapı
uygulanabilir.
Burada n işlemci ve k bellek
için n × k anahtara ihtiyaç
vardır.

Ref. [1]

Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

BELLEK PAYLAŞIMLI ÇOK İŞLEMCİLİ SİSTEMLER / Arabağlantı Ağları

ENG. TERMINOLOGY
& ACRONYMS

Önbellek Tutarlılığı (CACHE COHERENCE): Paylaşımlı
bellekli çok işlemcili bir sistemin programlanması kolaydır.
Bir programdaki her değişkenin bellekte özel bir konumu
vardır. Bu konuma herhangi bir işlemci erişebilir. Her
işlemcinin kendi önbelleği vardır. Bu nedenle, paylaşılan
verilerin kopyalarının birden fazla önbellekte bulunma
olasılığı sorun teşkil eder. Öyle ki, herhangi bir işlemci kendi
önbelleğindeki paylaşılan bir değişkene yeni bir değer
yazdığında, bu değişkenin bir kopyasının olduğu tüm
önbellekler eski, yanlış değere sahip olacaktır. Bu nedenle
değişikliklerin bildirilmesi gerekir, böylece kopyaları yeni
değere güncellenebilir veya geçersiz kılınabilir. Buna birden
çok önbellekte paylaşılan verilerin tutarlı bir görünümüne
sahip olmayı gerektiren önbellek tutarlılığını koruma denir.

Bir önbellekteki veriler üzerinde yazma işlemleri
gerçekleştiren iki temel yaklaşımdan biri olan yazma-geçiş
yaklaşımı hem önbellekteki hem de ana bellekteki verileri
değiştirir. Geri yazma yaklaşımı ise, yalnızca önbellekteki
verileri değiştirir; önbellekteki değiştirilmiş bir veri
bloğunun değiştirilmesi gerektiğinde ana bellek kopyası
güncellenir. Çok işlemcili bir sistemde önbellek tutarlılığını
ele almak için benzer yaklaşımlar kullanılabilir.

Mesh (örgü) ağ: Çok sayıda düğümü birbirine bağlamak
için şekildeki gibi 2 boyutlu bir örgülü ağ kullanılabilir.

Mesh'in her bir dahili düğümü, yatay ve dikey komşularının
her birine bir tane olmak üzere dört bağlantıya sahiptir.

Mesh'in sınırları ve köşelerindeki düğümler daha az
komşuya ve dolayısıyla daha az bağlantıya sahiptir. Aksi

takdirde mesh'te birbirinden çok uzakta olacak düğümler
arasındaki iletişimin gecikmesini azaltmak için, ağın zıt

sınırlarında bulunan düğümler arasında sarmal bağlantılar
oluşturulabilir. Bu tür bağlantılara sahip bir ağa torus denir.

Bir torustaki tüm düğümlerin dört bağlantısı vardır.
Ortalama gecikme azalır, ancak bir torus üzerinden
 istekleri
 ve yanıtları
 yönlendirmenin uygulama
 karmaşıklığı, basit bir
 mesh durumunda
 olduğundan biraz daha
 yüksektir.

Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ÖNBELLEK TUTARLILIĞI (CACHE COHERENCE)

ENG. TERMINOLOGY
& ACRONYMS

Geri Yazma Protokolü : Geri yazma protokolüyle tutarlılığın
sürdürülmesi, bellekteki bir veri bloğunun sahipliği
kavramına dayanır. Başlangıçta, bellek tüm blokların
sahibidir ve bellek, önbelleğine bir kopyasını yerleştirmek
için bir işlemci tarafından okunan herhangi bir bloğun
sahipliğini korur.

Bir işlemci önbelleğindeki bir bloğa yazmak isterse, önce bu
bloğun özel sahibi olmalıdır. Bunu yapmak için, diğer
önbelleklerdeki tüm kopyalar önce bir yayın isteğiyle
geçersiz kılınmalıdır. Bloğun yeni sahibi daha sonra başka
bir işlem yapmak zorunda kalmadan içeriği istediği gibi
değiştirebilir.

Başka bir işlemci değiştirilmiş bir bloğu okumak istediğinde,
blok için istek geçerli sahibine iletilmelidir. Veriler daha
sonra geçerli sahibi tarafından istekte bulunan işlemciye
gönderilir. Veriler ayrıca, sahipliği yeniden edinen ve
bellekteki bloğun içeriğini güncelleyen uygun bellek
modülüne de gönderilir. Önceki sahibi olan işlemcinin
önbelleği, bloğun bir kopyasını tutar. Bu nedenle, blok artık
iki önbellekteki ve bellekteki kopyalarla paylaşılır. Diğer
işlemcilerden aynı bloğu okumak için gelen sonraki istekler,
bloğu içeren bellek modülü tarafından karşılanır.

Yazma Protokolü : Yazma protokolü iki şekilde
uygulanabilir. Bir versiyon, diğer önbelleklerdeki değerleri
güncellerken, ikinci versiyon diğer önbelleklerdeki
kopyaları geçersiz kılar.

Önce güncelleme protokolünü ele alalım. Bir işlemci
önbelleğindeki bir veri bloğuna yeni bir değer yazdığında,
yeni değer aynı zamanda değiştirilen bloğu içeren bellek
modülüne de yazılır. Bu bloğun kopyaları diğer
önbelleklerde mevcut olabileceğinden, bu kopyalar yazma
işleminin neden olduğu değişikliği yansıtacak şekilde
güncellenmelidir. Bunu yapmanın en basit yolu, yazılan
verileri sistemdeki tüm işlemcilerin önbelleklerine
yayınlamaktır. Her işlemci yayınlanan verileri aldığında, bu
blok önbelleğinde mevcutsa etkilenen önbellek bloğunun
içeriğini günceller.

Yazma protokolünün ikinci versiyonu kopyaların geçersiz
kılınmasına dayanır. Bir işlem önbelleğine yeni bir değer
yazdığında, bu değer de bellekteki uygun konuma
gönderilir ve diğer önbelleklerdeki tüm kopyalar geçersiz
kılınır. Bunun ardından yine, geçersiz kılma isteklerini
sistem genelinde göndermek için yayınlanabilir.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ÖNBELLEK TUTARLILIĞI (CACHE COHERENCE)

ENG. TERMINOLOGY
& ACRONYMS

Yayıncılığı desteklemek için en doğal ağ tek yoludur. Az
sayıda işlemciyi tek bir yol kullanarak bellek modüllerine
bağlayan çoklu işlemcilerde, önbellek tutarlılığı snooping
olarak bilinen bir şema kullanılarak gerçekleştirilebilir.

Geri Yazma Protokolü : Başka bir işlemci değiştirilmiş bir
bloğa yazmak istediğinde, geçerli sahip verileri istekte
bulunan işlemciye gönderir. Ayrıca bloğun mülkiyetini
istekte bulunan işlemciye aktarır ve önbelleğe alınmış
kopyasını geçersiz kılar. Blok yeni sahip tarafından
değiştirildiği için, bellekteki bloğun içerikleri güncellenmez.
Aynı blok için bir sonraki isteği yeni sahip karşılar.

Geri yazma protokolünün, yazma-geçiş protokolünden
daha az trafik oluşturma avantajı vardır. Bunun nedeni, bir
işlemcinin bu bloğa başka bir işlemci tarafından ihtiyaç
duyulmadan önce bir önbellek bloğuna birkaç yazma
gerçekleştirme olasılığının yüksek olmasıdır. Geri yazma
protokolüyle, bu yazmalar yalnızca önbellekte
gerçekleştirilir ve geçersiz kılma isteğiyle sahiplik edinilir.
Yazma-geçiş protokolüyle, her yazma işlemi uygun bellek
modülünde de gerçekleştirilmeli ve diğer önbelleklere
yayınlanmalıdır.

Şimdiye kadar, bu protokollerdeki güncelleme ve geçersiz
kılma isteklerinin ara bağlantı ağı üzerinden yayınlandığını
varsaydık. Bu tür yayınların uygulanmasının kolay olup
olmadığı büyük ölçüde ara bağlantı ağının yapısına bağlıdır.

Snoopy (meraklı) Önbellekler: Tek yol sisteminde,
işlemciler ve bellek modülleri arasındaki tüm işlemler
yoldaki istekler ve yanıtlar aracılığıyla gerçekleşir. Aslında,
yola bağlı tüm birimlere yayınlanırlar. Her işlemci
önbelleğinin yoldaki tüm işlemleri gözlemleyen veya
gözetleyen bir denetleyici devresi olduğunu varsayalım.
Şimdi geri yazma protokolü ve önbellek tutarlılığının nasıl
uygulandığına ilişkin bazı senaryoları açıklayalım.

Daha önce bellekten önbelleğine bir bloğun kopyasını
okuyan bir işlemci, bu bloğa ilk kez yazmadan önce, işlemci
diğer tüm önbelleklere bir geçersiz kılma isteği
yayınlamalıdır. Bu isteği önbellek denetleyicileri kabul eder
ve aynı bloğun tüm kopyalarını geçersiz kılar. Bu eylem,
istekte bulunan işlemcinin bloğun yeni sahibi olmasına
neden olur. İşlemci daha sonra bloğa yazabilir ve onu
değiştirilmiş olarak işaretleyebilir. Aynı işlemcinin değişmiş
önbellek bloğuna yazmak için başka yayınına gerek yoktur.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ÖNBELLEK TUTARLILIĞI (CACHE COHERENCE)

ENG. TERMINOLOGY
& ACRONYMS

Snoopy (meraklı) Önbellekler: Şimdi, başka bir işlemci
aynı blok için yolda bir okuma isteği yayınlarsa, bellek yanıt
vermemelidir çünkü bloğun geçerli sahibi değildir. İstenen
bloğa sahip olan işlemci, yoldaki okuma isteğini dinler.
Önbelleğinde istenen bloğun değiştirilmiş bir kopyasını
tuttuğu için, belleğin yanıt vermesini önlemek için yola
özel bir sinyal verir. Ardından, bloğun bir kopyasını yayınlar
ve kopyasını değiştirilmemiş olarak işaretler. Yoldaki yanıtı,
okuma isteğini yayınlayan işlemcinin önbelleği kabul eder.
Bellek te, yanıtı, bloğun kopyasını güncellemek için kabul
eder. Bu durumda, bellek bloğun sahipliğini yeniden
kazanır ve bloğun kopyaları iki işlemcinin önbelleklerinde
olduğundan bloğun paylaşımlı bir durumda olduğu
söylenir. Önbelleğe alınan iki kopya ve bellekteki bloğun
kopyası aynı verileri içerdiğinden tutarlılık korunur.
İşlemcilerden gelen sonraki istekleri bellek karşılar.

Şimdi, iki işlemcinin kendi önbelleklerinde aynı bloğun
kopyalarının bulunduğu ve her iki işlemcinin de aynı anda
aynı önbellek bloğuna yazmaya çalıştığı duruma bakalım.
Blok paylaşımlı olduğundan, bellek bloğun sahibidir. Bu
nedenle, her iki işlemci de geçersiz kılma mesajını
yayınlamak için yolu kullanmayı talep eder.

Yolun kullanımı önce işlemcilerden birine verilir. Bu işlemci
geçersiz kılma talebini yayınlar ve bloğun yeni sahibi olur.
Dinleme yoluyla, diğer işlemcinin önbelleğindeki bloğun
kopyası geçersiz kılınır. Diğer işlemciye daha sonra yolun
kullanımı verildiğinde, yalnızca okunabilir bir talep yayınlar.
Bu talep, aynı blok için bir okuma talebini ve geçersiz kılma
talebini birleştirir. İlk işlemcinin denetleyicisi yalnızca
okunabilir talebi dinler, yolda bir veri yanıtı sağlar ve
önbelleğindeki kopyayı geçersiz kılar. Bu nedenle bloğun
mülkiyeti, talebi yapan ikinci işlemciye aktarılır. Blok tekrar
değiştirildiği için bellek güncellenmez. İki işlemciden gelen
talepler sırayla işlendiğinden, önbellek tutarlılığı korunur.
Bu şema, önbellek denetleyicilerinin yolun etkinliğini
gözleme ve uygun eylemi gerçekleştirme yeteneğine
dayanır. Bu tür şemalara snoopy-cache yöntemleri denir.

Performans nedenleriyle, snooping işlevinin bir işlemcinin
ve önbelleğinin normal çalışmasına müdahale etmemesi
önemlidir. Çoğu kez, önbellek bir istekle ilgili bloğun geçerli
bir kopyasını içermez. Gereksiz müdahale yapmamak için,
her önbelleğe önbellekteki bloklar hakkında aynı durum
bilgilerini koruyan ancak dinleme devresi tarafından ayrı
ayrı erişilebilen bir dizi yinelenen etiket sağlanabilir.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

DİZİN TABANLI ÖNBELLEK TUTARLILIĞI / MESAJ GEÇİREN ÇOKLU BİLGİSAYARLAR

ENG. TERMINOLOGY
& ACRONYMS

Dizin Tabanlı Önbellek Tutarlılığı: Snoopy önbellekleri
kavramının tek yol sistemlerinde uygulanması kolaydır.
Büyük bellek paylaşımlı çok işlemcili sistemler, halka ve
mesh gibi ara bağlantı ağlarını kullanır. Bu tür sistemlerde,
her bir isteği tüm işlemcilerin önbelleklerine yayınlamak
verimsizdir. Bu soruna ölçeklenebilir ancak daha karmaşık
bir çözüm, hangi düğümlerin paylaşımlı durumda belirli bir
bloğun kopyalarına sahip olabileceğini belirtmek için her
bellek modülündeki dizinleri kullanır.

Bir blok değiştirilirse, dizin geçerli sahibi olan düğümü
tanımlar. Bir işlemciden gelen her istek önce ilgili bloğu
içeren bellek modülüne gönderilmelidir. Bu bloğa ait dizin
bilgileri, gerçekleştirilen eylemi belirlemek için kullanılır.
Blok değiştirilirse, okuma isteği geçerli sahibine iletilir.
Paylaşılan bir blok için bir yazma isteği durumunda, tek tek
geçersiz kılmalar yalnızca söz konusu bloğun kopyalarına
sahip olabilecek düğümlere gönderilir. Önbellek tutarlılığını
uygulamaya yönelik dizin tabanlı yaklaşımın maliyeti ve
karmaşıklığı, kullanımını büyük sistemlerle sınırlar.

Günümüzdeki çok çekirdekli yongalar da dahil olmak üzere
küçük çok işlemcili cihazlar genellikle dinlemeyi kullanır.

Mesaj Geçiren Çoklu Bilgisayarlar: Çoklu işlemcileri
kullanmanın farklı bir yolu, sistemdeki her düğümü kendi
belleğine sahip tam bir bilgisayar olarak basitleştirmektir.
Sistemdeki diğer bilgisayarların bu belleğe doğrudan erişimi
yoktur. Paylaşılması gereken veriler, bir bilgisayardan
diğerine mesaj gönderilerek değiştirilir. Bu tür sistemlere
mesaj geçiren çoklu bilgisayarlar denir.

Paralel programlar, mesaj geçiren çoklu bilgisayarlar için
paylaşımlı bellekli çoklu işlemcilerden farklı şekilde yazılır.
Düğümler arasında veri paylaşmak için, verinin kaynağı olan
bilgisayarda çalışan program, hedef bilgisayara veriyi içeren
bir mesaj göndermelidir. Hedef bilgisayarda çalışan
program mesajı alır ve veriyi o düğümün belleğine kopyalar.

Mesaj geçişini kolaylaştırmak için, her düğümdeki özel bir
iletişim birimi genellikle gönderilen ve alınan mesajların
biçimlendirilmesi ve yorumlanmasının düşük seviyeli
ayrıntılarından ve mesaj verilerinin düğümün belleğine
kopyalanmasından sorumludur. Her düğümdeki bilgisayar,
iletişim birimine komutlar verir. Bilgisayar daha sonra diğer
hesaplamaları yapmaya devam ederken, iletişim birimi
mesaj gönderme ve alma ayrıntılarını halleder.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ÇOKLU İŞLEMCİLER İÇİN PARALEL PROGRAMLAMA

ENG. TERMINOLOGY
& ACRONYMS

Çoklu İşlemciler İçin Paralel Programlama:

Önceki bölümlerde, uygulama programlarında
paralellikten yararlanabilen bellek paylaşımlı çoklu
işlemciler için donanım düzenlemeleri açıklandı. Mevcut
paralellik, bağımsız geçişlere sahip döngülerde ve ayrıca
bağımsız üst düzey görevlerde bulunabilir.

Üst düzey bir dilde yazılmış bir kaynak program, bir
programcının istenen hesaplamayı anlaşılması kolay bir
şekilde ifade etmesine olanak tanır. Derleyici tarafından
makine diline çevrilmesi gerekir. İşlemcinin donanımı,
programcının istediği hesaplamayı gerçekleştirmek için
makine dili komutlarını doğru sırayla yürütmek üzere
tasarlanmıştır. Paralel olarak yürütülebilecek bağımsız üst
düzey görevleri otomatik olarak belirleyemez.

Derleyicinin paralelliği algılama ve kullanma konusunda da
sınırlamaları vardır. Bu nedenle, kaynak programdaki
genel hesaplamayı açıkça görevlere bölmek ve bunların
birden fazla işlemcide nasıl yürütüleceğini belirtmek
programcının sorumluluğundadır.

Bellek paylaşımlı çok çekirdekli işlemci için programlama,
tek işlemcili system programlamanın doğal bir uzantısıdır.

Yüksek seviyeli bir kaynak programı, tek bir işlemci
tarafından yürütülen görevler kullanılarak yazılır. Ancak
belirli görevlerin farklı işlemcilerde aynı anda yürütüleceğini
belirtmek de mümkündür. Verilerin paylaşımı, atanan
görevlerini gerçekleştirirken farklı işlemciler tarafından
okunan ve yazılan global değişkenleri tanımlayarak
sağlanır. Intel IA-32 mimarisini uygulayanlar gibi genel
amaçlı bilgisayarlarda şu anda kullanılan çok çekirdekli
yongalar bu şekilde programlanır.

Paralel programlamayı göstermek için, her biri N sayı içeren
iki vektörün skaler)dot) çarpımını hesaplama örneğini ele
alalım. Bu görev için bir C dili programı şekilde
gösterilmiştir. Burada iki vektörün içeriklerinin
başlatılmasının ayrıntıları, paralel programlamayla ilgili
yönlere odaklanmak için atlanmıştır.

Döngü, N çarpımın toplamını biriktirir. Her geçiş, önceki
geçişte hesaplanan kısmi toplama bağlıdır ve son geçişte
hesaplanan sonuç skaler çarpımdır. Bağımlılığa rağmen,
toplamanın ilişkisel özelliğinden yararlanarak programı eş
zamanlı yürütme için bağımsız görevlere bölmek
mümkündür. Her görev kısmi bir toplam hesaplar ve nihai
sonuç kısmi toplamların toplanmasıyla elde edilir.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ÇOKLU İŞLEMCİLER İÇİN PARALEL PROGRAMLAMA

ENG. TERMINOLOGY
& ACRONYMS

Çoklu İşlemciler İçin Paralel Programlama:
Skaler çarpımı hesaplamak için paralel bir program
uygulamada iki sorunun yanıtlanması gerekir:
• Kısmi toplamları hesaplamak için birden fazla işlemcinin
paralel yürütmeye katılmasını nasıl sağlanır?
• Skaler çarpımın nihai sonucu hesaplanmadan önce her
işlemcinin kısmi toplamını hesapladığından nasıl emin
olunur?

İş Parçacığı Oluşturma: İlk soruyu cevaplamak için, farklı
işlemcilere atanan görevlerin nasıl tanımlandığına ve bu
görevlerin birden fazla işlemcide nasıl yürütülmeye
başlatıldığına bakalım. İşlemci sayısı, P ve her vektördeki
eleman sayısı, N için parametreler kullanarak skaler çarpım
programının paralel bir sürümünü yazabiliriz. Basitleştirmek
için N'nin P'ye eşit olarak bölünebildiğini varsayalım. Genel
hesaplama, N çarpımın toplamını içerir. P işlemci için, her
görevin N/P çarpımın kısmi toplamının hesaplanması
olduğu P bağımsız görev tanımlarız.

Bir program tek bir işlemcide yürütüldüğünde, yürütme
denetiminin etkin bir iş parçacığı vardır. Bu iş parçacığı,
programın yürütülmesi başladığında işletim sistemi (OS)
tarafından örtük olarak oluşturulur. Paralel bir program için,
bağımsız görevlerin her işlemci için bir tane olmak üzere
birden fazla yürütme denetimi iş parçacığı tarafından ayrı
ayrı işlenmesini gerektirir. Bu iş parçacıkları açıkça
oluşturulmalıdır. Tipik bir yaklaşım, paralel programlamayı
destekleyen bir kütüphanede create_thread adlı bir rutin
kullanmaktır. Kütüphane rutini, yeni oluşturulan iş parçacığı
tarafından yürütülecek bir alt rutine işaretçi olan bir giriş
parametresini kabul eder. Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ÇOKLU İŞLEMCİLER İÇİN PARALEL PROGRAMLAMA

ENG. TERMINOLOGY
& ACRONYMS

Kütüphane rutini tarafından, farklı bir yığınla yeni bir iş
parçacığı oluşturmak için bir işletim sistemi hizmeti çağrılır,
böylece diğer alt rutinleri çağırabilir ve kendi yerel
değişkenlerine sahip olabilir. Tüm genel değişkenler tüm iş
parçacıkları arasında paylaşılır.

İş parçacıklarını birbirinden ayırmak gerekir. Bir yaklaşım, 0
ile P −1f arasındaki her iş parçacığı için özgün bir tam sayı
döndüren get_my_thread_id adlı başka bir kütüphane
rutini sağlamaktır. Bir iş parçacığı bu bilgiyle, sorumlu
olduğu hesaplama alt kümesini belirleyebilir.

Bariyer rutinini çağıran her iş parçacığı, son iş parçacığı
rutini çağırana ve tüm iş parçacıklarının yürütmelerine
devam etmesini sağlayana kadar yoğun bekleme
döngüsüne girer. Bu, iş parçacıklarının bariyer çağrısından
önceki ilgili hesaplamalarını tamamladığından emin olur.

İş Parçacığı Senkronizasyonu: İkinci soru, iş parçacıklarının
görevlerini ne zaman tamamladığının belirlenmesini içerir,
böylece nihai sonuç doğru bir şekilde hesaplanabilir. Bu
nedenle birden fazla iş parçacığının senkronizasyonu
gerekir. Birkaç senkronizasyon yöntemi vardır ve bunlar
genellikle paralel programlama için ek kütüphane
rutinlerinde uygulanır. Burada, bariyer adı verilen bir
yöntemi ele alacağız.

Bir bariyerin amacı, iş parçacıklarının bariyer için
kütüphane rutinine bir çağrının yapıldığı programdaki
belirli bir noktaya ulaşana kadar beklemelerini sağlamaktır.

Örnek Paralel Program: İş parçacığı oluşturma ve
senkronizasyonuyla ilgili sorunları ve iş parçacığı yönetimi
için sağlanan tipik kütüphane rutinlerini açıkladıktan sonra,
şimdi bir örnek olarak paralel skaler çarpım programını
sunabiliriz. Aşağıdaki şekil, bir ana rutini ve paralel yürütme
için bağımsız görevleri tanımlayan ParallelFunction adlı
başka bir rutini gösterir. Program yürütülmeye başlayınca,
ana rutini yürüten yalnız bir iş parçacığı vardır. Bu iş
parçacığı vektörleri, ve ardından bariyer senkronizasyonu
için gerekli bir paylaşılan değişkeni başlatır. Paralel
yürütmeyi başlatmak için, create_thread rutini, her biri
ParallelFunction'ı yürüten ek iş parçacıkları oluşturmak için
ana rutinden P−1 kez çağrılır. Ardından, ana rutini yürüten
iş parçacığı ParallelFunction'ı doğrudan çağırır, böylece
toplam P iş parçacığı genel hesaplamaya dahil olur. İşletim
sistemi yazılımı, iş parçacıklarını paralel yürütme için farklı
işlemcilere dağıtmaktan sorumludur.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ÇOKLU İŞLEMCİLER İÇİN PARALEL
PROGRAMLAMA

ENG. TERMINOLOGY
& ACRONYMS

Örnek Paralel Program: Her iş parçacığı, 0 ile P-1
aralığında özgün bir tam sayı tanımlayıcısı elde etmek
için ParallelFunction'dan get_my_thread_id'yi çağırır.
Bu bilgileri kullanarak, iş parçacığı o iş parçacığının
kısmi toplamını üreten döngünün başlangıç ve bitiş
dizinlerini hesaplar. Döngüyü yürüttükten sonra,
sonucu özgün tanımlayıcısını dizi dizini olarak
kullanarak paylaşılan partial_sums dizisinin ayrı bir
öğesine yazar. Ardından, iş parçacığı diğer iş
parçacıklarının hesaplamalarını tamamlamasını
beklemek için bariyer senkronizasyonu için
kütüphane rutinini çağırır.

Hesaplamasını tamamlayan son iş parçacığı bariyer
rutinini çağırdıktan sonra, tüm iş parçacıkları
ParallelFunction'a geri döner. ParallelFunction'da
gerçekleştirilecek başka bir hesaplama yoktur, bu
nedenle ana rutinde kütüphane çağrısı tarafından
oluşturulan P -1 iş parçacıkları sonlanır.
ParallelFunction'ı doğrudan ana rutinden çağıran iş
parçacığı, partial_sums dizisindeki değerleri
kullanarak nihai sonucu hesaplamak için geri döner. Ref. [1]

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

ENG. TERMINOLOGY
& ACRONYMS

Önceki şekildeki program, iş parçacığı oluşturma ve senkronizasyonunu göstermek için genel kütüphane rutinlerini
kullanır. C dilinde paralel programlama için büyük bir rutin koleksiyonu IEEE 1003.1 standardında tanımlanmıştır. Bu
koleksiyon ayrıca POSIX iş parçacıkları veya P iş parçacığı kütüphanesi olarak da bilinir. Çeşitli iş parçacığı yönetimi ve
senkronizasyon mekanizmaları sağlar. Bu kütüphanenin uygulamaları, çok işlemcili programlamayı kolaylaştırmak için
yaygın olarak kullanılan işletim sistemleri için mevcuttur.

PERFORMANS MODELLEME

Performans Modelleme: Bilgisayarın en önemli performans
ölçüsü, programları yürütme hızdır. Bir işlemciye komutların
getirilip yürütüldüğü hız, komut seti mimarisi ve donanım
tasarımı ile belirlenir. Yürütülen toplam komut sayısı da,
derleyici ve komut seti mimarisi tarafından belirlenir. Bir
işlemci için hususları belirleyen düşük seviyeli bir
matematiksel performans modelini daha önce görmüştük.

Bu modeldeki terimler, yürütülen komut sayısı, komut
başına ortalama döngü sayısı ve saat frekansıdır. Bu model,
yeterince ayrıntılı bilgi ile yürütme süresini tahmin edebilir.

Daha az ayrıntılı bilgiye dayanan daha yüksek seviyeli bir
model, performanstaki olası iyileştirmeleri değerlendirmek
için kullanılabilir. Bilgisayarlarda yürütme süresi olan
bir programı ele alalım. Amacımız, paralel işleme gibi bir
performans iyileştirmesi sunulduğunda yürütme süresinin
ne ölçüde azaltılabileceğini değerlendirmektir.

Yürütme süresinin bir kısmının 'in iyileştirmeden
etkilendiğini varsayalım. Kalan kesir, ,
değişmez. p, zamanın kısmının performans
artışı nedeniyle azaldığı faktörü temsil etsin. Yeni yürütme
süresi şöyle olur:

Hızlanma, veya oranıdır

Bu hızlanma ifadesi Amdahl Yasası olarak bilinir. Belirli bir
performans artışının, yürütme süresinin daha büyük bir
kısmını etkilemesi durumunda faydasının arttığına dair
sezgisel gözlemi ifade etmenin bir yoludur.

Orijinal yürütme süresinin bir dökümü belirlendikten
sonra, olası hızlanma için bir üst sınır belirlemek genellikle
yararlıdır. Bunu yapmak için, p →∞'nin yürütme süresinin
fenh kesrinin sıfıra ideal ancak gerçekçi olmayan azalmasını
yansıtmasını sağlarız.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

PERFORMANS MODELLEME

ENG. TERMINOLOGY
& ACRONYMS

Sonuçtaki hızlanma 'dir, bu da geliştirilmeyen yürütme süresi kısmının performans üzerindeki sınırlayıcı faktör
olduğu anlamına gelir.

 'in daha küçük bir değeri hızlanmada daha büyük bir sınır verir. Örneğin, , 10'luk bir üst sınır verir,
ancak , 20'lik daha büyük bir sınır verir. Ancak, gerçekçi bir p değeri kullanılarak beklenen hızlanma
normalde üst sınırın oldukça altındadır. Örneğin, ile p = 16 kullanıldığında, yalnızca 1/(0,05 + 0,95/16) =
9,1'lik bir hızlanma elde edilir, bu da 20'lik üst sınırın oldukça altındadır.

Bu tartışmadan çıkan önemli sonuç, geliştirilmiş kısım keyfi olarak büyük bir faktörle iyileştirilmiş olsa bile, orijinal
yürütme süresinin geliştirilmemiş kısmının elde edilebilir hızlanmayı önemli ölçüde sınırlayabileceğidir. Bir programcı,
belirli bir geliştirmeyi uygulamadan önce yürütme süresinin ve kesirlerini yaklaşık olarak bile
belirleyebiliyorsa,
Amdahl Yasası beklenen iyileştirmeye ilişkin yararlı bir içgörü sağlayabilir.

Bu bilgi, performanstaki beklenen kazanımın geliştirmeyi uygulamak için harcanan çaba ve masrafı haklı çıkarıp
çıkarmadığını belirlemek için kullanılabilir.

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

REFERANSLAR

Kaynaklar

,,

1- Hamacher, C., Vranesic, Z., Zaky, S. and Manjikian, N. (2012). Computer
 Organization and Embedded Systems. McGraw Hill, New York.
 ISBN 978–0–07–338065–0

2- Bryant, R.E. and O’Hallaron, D.R. (2016). Computer Systems, A Programmer’s
 Perspective. Pearson Education Limited, Malaysia. ISBN 10: 1-292-10176-8

3- Mono, M.M. (2001). Bilgisayar Sistem Mimarisi. Literatür Yayınları, İstanbul.
 ISBN 975-843-31-5

4- Stallings, W. (2005). Computer Organisation and Architecture, Designing for
 Performance. Pearson, Prentice Hall, NJ. ISBN 0-13-607373-5

5- Abd-El-Barr, M. and El-Rewini, H. (2005). Fundamentals of Computer
 Organization and Architecture. Wiley-Interscience, Hoboken-New Jersy.
 ISBN 0-471-46741-3

6- Reynolds, C. and Tymann, P. (2008). Principles of Computer Science. McGraw-Hill
 Schaum’s Outline Series, New York. 0-07-151037-0

7- https://www.wikipedia.org v.b internet siteleri

2025-26 GYY DERSİ

BM303
BİLGİSAYAR

MİMARİSİ ve
ORGANİZASYONU

Prof. Dr. A. Akbaş

https://www.wikipedia.com/

Open in Google Trans

13.ncü HAFTA
DERSİNİN SONU

https://translate.google.com/?um=1&ie=UTF-8&hl=en&client=tw-ob#auto/en/Gereksinimleri%20belirlemeye%20y%C3%B6nelik%20olarak%20bir%20sistemi,%20s%C4%B0stem%20par%C3%A7as%C4%B1n%C4%B1%20ya%20da%20s%C3%BCreci%20analiz%20eder,%20alternatifleri%20m%C3%BChendislik%20y%C3%B6ntemlerini%20kullanarak%20k%C4%B1yaslar,%20en%20uygun%20%C3%A7%C3%B6z%C3%BCm%C3%BC%20tasarlar.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

