-r:.‘viﬁim..'----«-
sEee’ /—-—

-4 lﬁ i
.'. l

d l‘t‘ 2 B

) O

®

AR R R R A

| ® BILECIK SEYH EDEBALI/
Ders Kodu : BM303 . . UNlVERSlTESI

L+T+P :0-3-1

AKTS 4 Dersi Veren : MuUhendislik Fakultesi
Prof. Dr. Ahmet Akbas Bilgisayar MUh. Bolumu

EEEEEEN « I d
EEEEEs FR (
ERase FL Al
aees 4RBAN.

.

sanmun A
A LLLLY
QLLLLUOT |
EEEEEN)
SERREE) et
sSEsEae;
TIILLL
ssasae
sSaEsnes
SEeEEaEs
TII LAY L

n
&
kg
®
@
»
@
[
"
L3
&
@
£
&
&
&
i3
@
i
&
&
.
&
e
]
i
&
il
L]
&
'» |
@

Performans

https://translate.google.com/?um=1&ie=UTF-8&hl=en&client=tw-ob#auto/en/Gereksinimleri%20belirlemeye%20y%C3%B6nelik%20olarak%20bir%20sistemi,%20s%C4%B0stem%20par%C3%A7as%C4%B1n%C4%B1%20ya%20da%20s%C3%BCreci%20analiz%20eder,%20alternatifleri%20m%C3%BChendislik%20y%C3%B6ntemlerini%20kullanarak%20k%C4%B1yaslar,%20en%20uygun%20%C3%A7%C3%B6z%C3%BCm%C3%BC%20tasarlar.

D>

BILECIK SEYH
UNIVERS

13.ncii HAFTA DERSI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

Ders igerigi :

e Coklu is
parcacigl
* Genel amaglive
grafik
islemcilerde
vektor isleme
 Paylasilan
bellekli coklu
islemciler
 Paylasilan
veriler igin
tutarl 6nbellek
e Dagitilmig
bellekli
sistemlerde
mesaj gegirme
e Paralel
programlama
e Performansin
matematiksel
modellemesi

1- Bilgisayar Sistemlerine Giris (Fonksiyonel Birimler, Sistem Mimarisi, Performans, Teknolojik Arka Plan);

2- Programci Bakis Agisiyla bir Sistem Turu;

3- Bilgisayar Sistemlerinde Bilginin (information) Temsili ve Maniiplasyonu;

4- Komut Seti Mimarisi, Programlarin Makine Diizeyinde Temsili-1 (RISC ve CISC mimariler);

5- Komut Seti Mimarisi, Programlarin Makine Diizeyinde Temsili-ll (IA-32 ve x86-64 mimarileri);

6- islemci ve Giris/Cikis Birimleri Arasinda Veri Transferi (Program Kontrollii G/C, Kesmeli G/C);

7- Yazihm (Program Hazirlama ve Calistirma Siirecleri, C ve Assembly Dilleri Arasindaki Etkilesim, isletim Sistemleri);
8- islemci (CPU) Birimi (Fonksiyonel Birimler, Komut Getirme vr Yiiriitme Adimlari, Kontrol Sinyalleri, HDL);

9- Program Performansinin Optimizasyonu (Komut Diizeyinde Paralelleme, Es-zamanlilik, Stiperskaler islemciler);
10- Giris/Cikis Organizasyonu (Yol Yapisi, Yol Hakimligi, Arayiz Devreleri, Ara-baglanti Standartlari);

11- Bellek Sistemi (Temel Bellek Devreleri, Ana Bellek Organizasyonu, Bellek Teknolojileri);

12- Aritmetik (Tam Sayi ve Kayan Noktali Sayilar icin Aritmetik islem Devreleri);

13- Paralel Calisma ve Performans (Coklu is Parcalari, Vektérel Siiregler, Paylasimli Bellekli Coklu islemciler);

14- ARM islemcili SoC Ornekleri.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

DONANIMSAL COKLU iS PARCACIGI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Performans optimizasyonu icin 9.ncu hafta dersinde,
program yuritme suresini azaltan boru hatti ve stiperskalar
islemlerini; 11.nci hafta dersinde de, komut ve verilere
erisim suresini azaltan énbellek kullanimini gérmustik. Bu
derste, performansi daha da iyilestirmek icin ¢oklu is
parcacigi (multi-threading), vektor isleme ve ¢oklu isleme
(multi-processing) yontemlerini ele alacagiz. Bu yontemler,
genel amacli bilgisayarlarda kullanilan ¢ok ¢ekirdekli islemci
yongalarinda uygulanmaktadir. Bu yontemlerle performans
artisi, kaynak kullanimi iyilestirilerek ve paralel olarak daha
fazla islem gerceklestirilerek saglanir.

Her proses, program iginde bagimsiz bir yiiriitme yoluna
karsilik gelen bir veya daha cok is parcacigi (thread) icerir.
is parcaciklarinin durumu, program sayaci ve diger
islemci kaydedicilerinin igerigi ile belirlenir. iki veya daha
fazla is parcacig, farkli islemcilerde calisabilecegi gibi; bir
programin ayni bolimunu farkh veriler Gzerinde ylritme
veya bir programin farkli bolimlerini ylritmek lizere de
atanabilir. Farkl programlarin is parcaciklari da farkl
islemcilerde yurutulebilir. Tek bir programin pargasi olan
tim is pargaciklari ayni bellek adres alaninda ¢alisir ve
ayni islemle iligkilendirilir.

isletim sistemi (OS), programlar arasinda baglam gecisleri
gerceklestirerek ayni islemcinin farkli programlar icin ¢oklu
gorev (multitasking) yapmasini saglar. Bir program OS
tarafindan, mevcut ylritme durumu bilgisiyle beraber bir
proses (islem) olarak kabul edilir. isletim sistemi bu
kapsamda her prosesle birlikte ona tahsis edilen bellek ve
diger kaynak bilgilerini tutar. Ornegin bilgisayarda acilan
Web tarayici, kelime islemci ve muizik programi gibi her bir
uygulamayi ayri bir prosesle iliskilendirebilir.

Bu derste, ayni islemcide g¢alisan ve her biri tek bir is
parcacigina sahip olan iki veya daha fazla programla
olusan ¢oklu gérevlere odaklanacagiz. isletim sistemi,
engellenmemis proseslerden birini zaman dilimleme
yontemi ile secerek kisa bir stire ¢calismasina izin verir. Bu
surede yalnizca secilen prosese karsilik gelen is parcacigi
etkindir. isletim sistemi bu siire sonunda baglam degistirir
ve bir sonraki zaman diliminde ilgili is parcacigini etkin
hale getiren farkli bir prosesi secer. Bunun icin, isletim
sisteminde bir zamanlayici kesme hizmet rutinini ¢cagirir.

BILECIK SEY
UNIVER

>

H EDEBALI
SITESI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

DONANIMSAL COKLU iS PARCACIGI

islemci, birden fazla is parcacigiyla calismak icin, birden cok
sayida program sayaci ve 6zdes kaydedici kiimesi kullanir.
Her kaydedici kiimesi farkli bir is parcacigina tahsis edilebilir.
Boylece, bir baglam gecisi esnasinda kaydedici icerikleri
kendi tUzerine kaydedilerek geri yluklemede zaman kaybinin
onune gegcilir. Buna donanimsal ¢oklu is pargacigi denir.
Birden cok kaydedici kiimesi, baglam gecisini basitlestirir ve
hizlandirir. Sonraki komutlari almak ve ylriatmek icin farkl
bir kaydedici kiimesi kullanmak Uizere sadece islemcideki bir
donanim isaretgisi degistirilir. Farkli bir is parcacigina gegis,
bir saat déngiisii icinde tamamlanabilir. Onceki is
parcaciginin durumu kendi kaydedici kiimesinde saklanir.

Farkli bir is parcacigina gegis, sabit bir zaman araliginin
sonunda degil, belirli bir olayin meydana gelmesiyle
herhangi bir anda da tetiklenebilir. Ornegin, etkin is parcacig
icin bir Load veya Store komutu yuratulurken bir 6nbellek
iskalamasi meydana gelebilir. islemci arada gecen bu siireyi
degerlendirmek icin, daha yavas olan ana bellege erisirken
duraklamak yerine, daha hizla farkh bir is parcacigina
gecerek diger komutlari alip yliritmeye devam edebilir.

Boylece, onbellek iskalamasi gibi bir olayda baska bir is
parcacigina gecmeden once bir is parcaciginin daha ¢ok
sayida komutu yarutilebilir.

is parcaciklari arasinda gecis yapmanin bir alternatifi de,
belirli olaylarda her komut alindiktan sonra gecis
yapmaktir. Buna ince taneli (fine grained) veya ig ice
gecmis (interleaved) coklu is parcacigi denir. Burada
amac islemci verimini artirmaktir. Her yeni komut, diger is
parcaciklarindan gelen onctllerden bagimsizdir.

Diger taraftan, veri bagimliligi nedeniyle olusan
duraklamalari azaltilmalidir. Bu kapsamda, birden ¢ok is
pargacigindan gelen komutlar ig ice gegirilerek verim
artinlabilir. Bu durumda belirli bir is parcaciginin tim
komutlarini tamamlamasi daha uzun surer. Intel 1A-32
mimarisine sahip islemcilerde yalnizca iki is parcacigi icin
sahip bir i¢c ice gecmis ¢oklu is parcacigl bicimi kullanilir

Vektor isleme: Birden cok sayida hesaplama gerektiren

bir uygulama, tamsayi veya kayan noktali sayilar dizisi gibi

veri vektorleri Uzerinde islemler gergeklestirmek icin
donguler kullanan programlar igerir.

Buna kaba taneli (coarse grained) ¢oklu is pargacigi denir

D>

BILECIK SEYH EDEBAL
UNIVERSITES

VEKTOR (SIMD) iSLEME

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

Bir islemci bu tir bir dongtideki komutlari yurittiginde,
islemler vektor elemanlari Gzerinde tek tek gerceklestirilir.
Sonug olarak, tim vektor elemanlarini islemek icin bircok
komutun yiratilmesi gerekir. Bunun icin islemci birden fazla
ALU icerecek sekilde gelistirilebilir.

ENG. TERMINOLOGY
& ACRONYMS

Boyle bir islemcide, tek bir komut kullanarak birden fazla
veri 6gesi Uzerinde paralel islem yapmak miumkindur. Bu
komutlara tek komutla ¢oklu veri (SIMD) isleme veya vektor
komutlarn denir. Bunlar paralel gerceklestirilen islemlerin
bagimsiz olmasi halinde kullanilabilir: veri paralelligi.

Vektor komutlari icin veriler, her biri birkag veri 6gesini
tutabilen kaydedicilerde tutulur. Her vektor kaydedicisindeki
0ge sayisina (L) vektor uzunlugu denir. Bu birden fazla ALU
uzerinde paralel olarak gerceklestirilebilecek islem sayisidir.

Ayni vektor kaydedicileri kullanilarak farkl boyutlardaki veri
ogeleri icin vektor komutlari saglanirsa, L degisebilir.
Ornegin, Intel IA-32 mimarisi, L = 2'den L = 16'ya kadar
degisen vektor uzunluklari icin komutlar tarafindan
kullanilan 128 bitlik vektor kaydedicilere sahiptir ve bu da 64
bitten 8 bite kadar degisen boyutlardaki tam sayi veri
ogelerine karsilik gelir.

Vektor kaydedicilerinin nasil kullanildigini gosteren tipik
vektor komutu ornekleri asagida verilmistir. OP kodunun
her veri 6gesinin boyutunu belirten bir S eki icerdigi
varsayilirsa, bir vektordeki 6ge sayisi, L, belirlenir. Bellege
erisen komutlarin, etkin adres hesaplanirken geleneksel
bir kaydedicinin icerikleri kullanilir. Vektor komutu

VectorAdd.S Vi, Vj, Vi

Vj ve Vk vektor kaydedicilerindeki 6geleri kullanarak L
toplamini hesaplar ve elde edilen toplamlari Vi'ye
yerlestirir. Diger aritmetik islemleri gerceklestirmek icin
benzer komutlar kullanilir.

Bir vektor kaydedici ile bellek arasinda birden fazla veri
ogesini aktarmak icin 6zel komutlara ihtiyag vardir.

VectorLoad. S Vi, X(Rj)

komutunun, X + [Rj] bellek konumundan baslayan L
ardisik 6genin vektor kaydedici Vi'ye yikler. Bunun gibi,

VectorStore.S Vi, X(Rj)

komutunun, vektor kaydedici Vi'nin iceriginin bellekte L
ardisik 6ge olarak depolanmasini saglar.

BILECIK SEYH
UNIVERS

EDEBALI
ITESI

VEKTORLESTIRME

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Yuksek seviyeli dilde yazilmis bir kaynak
programinda, tam sayi veya kayan nokta sayilarindan
olusan dizilerde islem yapan dongulerin, her geciste

gerceklestirilen islemleri diger gecislerden
bagimsizsa vektorlestirilebilir. Vektor komutlarinin
kullanilmasi, yuritilmesi gereken komut sayisini
azaltir ve islemlerin birden fazla ALU'da paralel
olarak gerceklestirilmesini saglar. Bir vektorlestirici
derleyici, cok karmasik degillerse bu tir dongileri
taniyabilir ve vektor komutlari Gretebilir.

Dongunin vektorlestirilmesi, asagidaki C-kodlu basit

ornekle gosterilmistir. A, B ve C dizileri igin bellekteki

baslangic konumlarinin R2, R3 ve R4 kaydedicilerinde
oldugu varsayilirsa, derleyici, geleneksel makine dili

komutlarini kullanarak yandaki sekilde gosterilen
donglyu uretebilir. Dongl govdesinde dokuz komut
vardir, dolayisiyla dongtiden N gecis icin toplam 9N
komut yaGratulur.

Donglyi vektorlestirmek icin derleyici, dongudeki her gecisteki
hesaplamanin diger gecislerden bagimsiz oldugunu ve ayni
islemin birden fazla eleman lizerinde ayni anda
gerceklestirilebilecegini kabul etmelidir. Basitlestirmek icin, gecis
sayisi olan N'nin vektor uzunlugu olan L'ye esit olarak
boltunebildigini varsayalim. Donglinin basindaki Load, Add ve
Store komutlari, ayni anda L eleman lizerinde islem yapan karsilik
gelen vektor komutlariyla degistirilir.

Sonug olarak, vektorlestirilmis dongu dizilerdeki tim verileri
islemek icin yalnizca N/L gecisi gerekir. Dongudeki her geciste L
eleman islendiginde, R2, R3 ve R4 kaydedicilerindeki adres
isaretcileri 4L artirihir ve R5 kaydedicisindeki sayim L azaltilir.

for(1=0;1< N;1+4)
Ali] =B[1] + C[1];
Ref. [1]

Move R5, #N R.5 1s the loop counter.

LOOP: Load R6, (R3) R3 points to an element in array B.
Load R7, (R4) R4 points to an element in array C.
Add R6,R6, R7 Add a pair of elements from the arrays.
Store R6, (R2) R2 points to an element in array A.
Add R2,R2,#4 Increment the three array pointers.
Add R3, R3, #4
Add R4, R4, #4 Ref. [1]
Subtract R5,R5,#1 Decrement the loop counter.

Branch_if [R5]=0 LOOP Repeat the loop if not finished.

BILECIK SEYH
UNIVERS

EDEBALI
ITESI

VEKTORLESTIRME

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Vektorlestirilmis dongl asagidaki sekilde gosterilmistir. Derleyicinin, Add
komutlarinda dogrudan operant olarak verilen ifade i¢in 4L degerini
hesapladigini varsayiyoruz. Dongl govdesinde hala dokuz komut vardir,
ancak gecis sayisi artik N/L oldugundan, ylritiilmesi gereken toplam
komut sayisi yalnizca 9N/L'dir.

Vektorize edilebilir dongiiler, bilgisayar grafikleri ve dijital sinyal isleme
gibi uygulamalar icin programlarda bulunur. Bu tur dénguler, birkag veri
0gesi Uzerinde ayni anda gerceklestirilebilen bircok bagimsiz hesaplama
yapar. Bir uygulama icin ylritme siresinin buyuk bir kismida bu tir

dongller yuriGtuliyorsa, bu dongtler vektorlestirilerek toplam yiritme
suresi onemli olctide azaltilabilir. Performans iyilestirmesi, paralel olarak
calisabilen ALU sayisini belirleyen vektor uzunlugu L ile sinirlanir. Daha
yuksek performans, baska tir bir vektor isleme destegi ile uygulanabilir.

Move RS, #N R35 counts the number of elements to process.
LOOP: VectorLoad.S V(. (R3) Load L elements from array B.

VectorLoad.S V1, (R4) Load L elements from array C.

VectorAdd.S V), VO, V1 Add L pairs of elements from the arrays.

VectorStore.S Vi, (R2) Store L elements to array A.

Add R2. R2, #4*L. Increment the array pointers by L words.

Add R3, R3, #4*L

Add R4, R4, #4*L

Subtract R5, R5, #L Decrement the loop counter by L.

Branch_if [R3]=0 LOOP Repeat the loop if not finished. Ref. [1]

Grafik isleme Birimleri: Bilgisayar grafikleri
icin islemeye yonelik artan talepler, grafik
isleme birimi (GPU) adi verilen 6zel
yongalarin gelistirilmesine yol agmistir.
GPU'larin temel amaci, video oyunlari gibi
yuksek cozunurlikla G¢ boyutlu grafiklerde
ihtiyac duyulan cok sayida kayan nokta
hesaplamasini hizlandirmaktir. Bu
hesaplamalarda yer alan islemler genellikle
bagimsiz oldugundan, buyuk bir GPU
yongasi, bunlari paralel olarak
gerceklestirmek icin kayan nokta ALU'larina
sahip yuzlerce basit ¢cekirdek icerir.

GPU yongasi ve bunun igin ayrilmis bellek bir
video kartinda bulunur. Boyle bir kart, PCle
standardi gibi bir ara baglanti standardi
kullanilarak bir ana bilgisayarin genisletme
yuvasina takilir. GPU yongasindaki isleme
cekirdekleri icin kiictk bir program yazilir.
Cok sayida cekirdek bu programi paralel
olarak yuratur.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

GRAFIK ISLEME BiRIMLERI (GPU)

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Cekirdekler ayni komutlari yuritur, ancak farkli veri
ogeleri Gzerinde calisir. Ayri bir kontrol programi, ana
bilgisayarin genel amacli islemcisinde calisir ve
gerektiginde GPU programini ¢agirir.

GPU hesaplamasi baslamadan 6nce, ana bilgisayar
programi 6nce GPU programinin ihtiya¢ duydugu verileri
ana bellekten ayrilmis GPU bellegine aktarir. Hesaplama

tamamlandiktan sonra, ayrilmis bellekteki sonucg cikti
verileri ana bellege geri aktarilir.

Bir GPU cipindeki islem gekirdekleri, genel amagli bir
islemcide kullanilanlardan farkli olan 6zel bir komut
setine ve donanim mimarisine sahiptir. Bir érnek,
NVIDIA'nin GPU ciplerindeki cekirdekler icin kullandigi
Hesaplama Birlestirilmis Aygit Mimarisi'dir (Compute
Unified Device Architecture, CUDA). Genel amacli bir
islemci ve bir GPU igceren programlarin yazilmasini
kolaylastirmak icin NVIDIA tarafindan CUDA C adi verilen
bir C programlama dili uzantisi gelistirilmistir. Bu uzanti,
GPU cipindeki islem cekirdekleri tarafindan ylritilen
islevleri etiketlemek icin kullanilan 6zel anahtar
sozcuklerle tek bir programin C dilinde yazilmasini saglar.

Derleyici ve ilgili yazilim araclari, son nesne programini ana
bilgisayar ve GPU c¢ipi icin makine komutlarina cevrilen
bolimlere otomatik olarak béler. Kiitiiphane rutinleri, GPU
tabanli bir video kartinin ayrilmis belleginde depolama alani
tahsis etmek ve ana bellek ile ayrilmis bellek arasinda veri
aktarmak icin saglanir. Ayrica, herhangi bir satictdan GPU
yongalari iceren sistemler icin bir programlama cercevesi
olarak endustri tarafindan OpenCL adli acik bir standart
onerilmistir .

Paylasimh Bellekli Cok islemcili Sistemler: Cok islemcili bir
sistem, ayni anda bagimsiz gorevleri yliritebilen bir dizi
islemciden olusur. Bu gorevlerin ayrinti diizeyi 6nemli 6lclide
degisebilir. Bir gorev, bir dongliden bir gecis icin birka¢c komut
veya bir alt rutinde yurutilen binlerce komut icerebilir.

Paylasimli bellekli cok islemcili sistemde, tim islemciler ayni
bellege erisebilir. Farkh islemcilerde calisan gorevler, ayni
adresleri kullanarak bellekteki paylasimli degiskenlere
erisebilir. Paylasimli bellegin boyutu buyuk olabilir. Tek bir
modulde buyuk bir bellek uygulamak, bircok islemcinin
bellege ayni anda erismek icin istekte bulunmasi durumunda
bir darbogaz yaratir.

D>

BILECIK SEYH EDEBALI|
UNIVERSITESI

BELLEK PAYLASIMLI COK iISLEMCILi SISTEMLER

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Bu sorun, bellegi birden fazla modiile dagitarak
hafifletilir, boylece farkli islemcilerden gelen ayni anda
gelen isteklerin, adreslerine bagl olarak farkh bellek
modauillerine erisme olasiligl daha yiiksek olur.

Bir baglanti agi, herhangi bir islemcinin paylasiml
bellegin bir parcasi olan herhangi bir modiile erismesini
saglar. Bellek modiilleri islemcilerden fiziksel olarak ayri

tutuldugunda, bellege erisim isteklerinin tim{ agdan
gecmek zorundadir ve bu da gecikmeye neden olur.
Sekil boyle bir dizenlemeyi gostermektedir.

Processors

P] P- . 8w

|

Interconnection network

]

M, M, . s 0

Memories

;

k

Ref. [1]

islemcilerden bellek modiillerine erisim icin ayni ag
gecikmesine sahip boyle bir sisteme Tekdlizen Bellek Erisimi
(Uniform Memory Accsess, UMA) coklu islemcisi denir.
Gecikme tekdiize olsa da, bircok islemci ve bellek modulin
birbirine baglayan bir ag icin bliylk olabilir.

Daha iyi performans icin, her islemciye yakin bir bellek modult
yerlestirmek tercih edilir. Sonug, her biri bir islemci ve bir
bellek modultinden olusan bir digim koleksiyonudur.
Digumler daha sonra Sekildeki gibi aga baglanir. Bir islemci
yerel bellegine erisim isteginde bulundugunda ag gecikmesi
onlenir. Ancak, uzak bir bellek modiliine erisim istegi agdan
gecmelidir. Paylasilan bellegin yerel ve uzak boélimlerine erisim
icin gecikmelerdeki fark nedeniyle, bu tir sistemlere Non-
Uniform Memory Accsess (NUMA) coklu islemcileri denir.

P, | M, P, | M, * o o P, | M,
A [[}
' ! '
< Interconnection network >
Ref. [1]

D>

BILECIK SEYH EDEBAL
UNIVERSITES

BELLEK PAYLASIMLI COK iISLEMCILi SISTEMLER / Arabaglant: Aglari

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Arabaglanti agi, sistemdeki herhangi bir dGgim cifti
arasinda bilgi aktarimina izin vermelidir. Ag ayrica bir
digiimden diger bircok digime bilgi yayinlamak icin
de kullanilabilir. Agdaki trafik, isteklerden (okuma ve
yazma gibi) ve veri aktarimlarindan olusur.

Belirli bir agin uygunlugu maliyet, bant genisligi, etkili
cikti ve uygulama kolayligi agisindan degerlendirilir.
Bant genigligi terimi, bir iletim baglantisinin veri
aktarma kapasitesini ifade eder ve saniyede bit veya
bayt olarak ifade edilir. Etkin ¢ikti, gercek veri aktarim
hizidir. Bu hiz, mevcut bant genisliginden daha azdir
cunku belirli bir baglanti, veri aktarimini koordine eden
kontrol bilgilerini de tagimalidir.

Ag uzerinden bilgi aktarimi genellikle sabit uzunlukta
ve belirtilen formatta paketler seklinde gerceklesir.
Ornegin, bir okuma istegi muhtemelen bir islemciden
bir bellek moduliine gonderilen tek bir pakettir. Paket,
kaynak ve hedef icin diiglim tanimlayicilarini, okunacak
konumun adresini ve ne tir bir okuma isleminin
gerektigini belirten bir komut alanini icerir.

Bir bellek modiline bir kelime yazan bir yazma istegi, yazilacak
verileri iceren tek bir paket olma olasiligi da yiksektir. Ote
yandan, bir okuma yaniti, veri aktarimi icin birkac paket
gerektiren tim bir 6nbellek blogunu icerebilir.

ideal olarak, tam bir paket, agdaki herhangi bir diigiim veya
anahtarda bir saat dongusuinde paralel olarak islenir. Bu, bircok
kabloyu iceren genis baglantilara sahip olmak anlamina gelir.
Ancak, maliyeti ve karmasikhgi azaltmak icin baglantilar
genellikle 6nemli 6lclide daha dardir. Bu gibi durumlarda, bir
paket, her biri bir saat dongusiinde iletilebilen daha kiiclik
parcalara boliinmelidir. Coklu islemcilerde yaygin olarak
kullanilan ara baglanti agi cesitleri asagida aciklanmistir.

Yol (bus): Bilgi aktarimi icin tek bir paylasimli yol saglayan bir
dizi hatdir. Yollar, genellikle UMA ¢oklu islemcilerinde bir dizi
islemciyi birkag paylasimli bellek moduliine baglamak icin
kullanilir. Herhangi bir anda birgok olasi istekgiden yalnizca
birine yolun kullanimina izin verilmesini saglamak igin tahkim
gereklidir. Yol, yola erisim icin ¢ekisme ve bir¢cok islemci
baglandiginda elektriksel yiklemenin neden oldugu artan
yayilma gecikmeleri nedeniyle nispeten az sayida islemci igin
uygundur.

D>

BILECIK SEY
UNIVER

H =
s

BELLEK PAYLASIMLI COK iISLEMCILi SISTEMLER / Arabaglant: Aglari

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Basit bir yol, gecerli istek icin yanit saglanana kadar
yolda yeni bir istegin gdériinmesine izin vermez. Ancak,
yanit gecikmesi yiksekse, yolun 6nemli bir bosta kalma
suresi olabilir. Bir istegin ve karsilik gelen yanitinin ayri

olaylar olarak ele alindigi bolinmus islem yolunu
kullanarak daha yiiksek performans elde edilebilir.

Bunlar arasinda baska aktarimlar da gerceklesebilir.

Birden fazla islemcinin bellege okuma istekleri yapmasi
gereken bir durumu dislinin. Tahkim (yol hakemligi),
istegi icin veri yolunun kullanimina izin verilecek ilk
islemciyi secmek icin kullanilir. istek yapildiktan sonra,
yolu bosta birakmak yerine istegini yapmak tzere ikinci
bir islemci secilir. Bu istegin farkh bir bellek modiliine
yapildigi varsayilirsa, iki okuma erisimi paralel ilerler.

Hicbir modul erisimini tamamlamamissa, istegini
yapmak Uzere Uclncu bir islemci secilir ve bu boyle
devam eder. Sonunda, bir bellek moduli okuma
erisimini tamamlar. Verileri istekte bulunan islemciye
aktarmak icin yolu kullanma izni verilir. Diger moddiller
erisimlerini tamamladik¢a, yol yanitlarini aktarmak igin
kullanilr.

Her istek ile karsilik gelen yaniti arasindaki gercek zaman
uzunlugu, bellekle farkli islemler icin istekler ve yanitlar,
mevcut bant genisliginin verimli bir sekilde kullanilmasi icin
yolda ic ice gecirildiginden degisebilir.

Bolinmius islem yolu daha karmasik bir yol protokoll gerektirir.
Karmasikhgin ana kaynagi, her yaniti karsilik gelen istegiyle
eslestirme gereksinimidir. Bu genellikle yolda goriinen her
istekle benzersiz bir etiket iliskilendirilerek ele alinir. Daha

sonra her yanit, kaynagin orijinal istegiyle eslestirilebilmesi icin

uygun etiketle birlikte gorintilenir.

Ring (Halka): Digumler arasinda noktadan noktaya
baglantilarla bir halka agi olusturulur. Sekilde tek bir halka
gosterilmistir. Uzun tek bir halka, herhangi iki digim
arasindaki iletisim icin yuksek ortalama gecikmeyle sonuclanir.

o D

Ref. [1]

>

BILECIK SEYH EDEBAL
UNIVERSITES

BELLEK PAYLASIMLI COK iISLEMCILi SISTEMLER / Arabaglant: Aglari

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Bu yuksek gecikme iki farkl sekilde azaltilabilir.
Diglumleri zit yonde baglamak icin ikinci bir halka
eklenebilir. Ortaya c¢ikan ¢ift yonla halka,
ortalama gecikmeyi yariya indirir ve bant
genisligini iki katina ¢ikarir. Ancak, iletisimlerin
islenmesi daha karmasiktir.

Baska bir yaklasim, halkalarin bir hiyerarsisini
kullanmaktir. Sekilde iki seviyeli bir hiyerarsi
godsterilmistir. Ust seviye halka, alt seviye halkalari
birbirine baglar. Alt seviye halkalardaki herhangi
iki digum arasindaki iletisim icin ortalama
gecikme, bu duzenlemeyle azaltilir. Ayni alt seviye
halkadaki diiglimler arasindaki transferler, Ust
seviye halkayl ge¢gmek zorunda degildir. Farkh alt
seviye halkalardaki diglimler arasindaki
transferler, st seviye halkanin bir kisminda bir
gecisi icerir.

Hiyerarsik semanin dezavantaji, farkl alt seviye
halkalardaki bircok dugtmdun birbirleriyle sik sik
iletisim kurmasi durumunda Ust seviye halkanin
bir darbogaz haline gelebilmesidir.

Co .

1]

-

o

> Upper ring

)

Lower rings

Ref. [1]

Crossbar (Capraz cubuk): Capraz cubuk, aga bagli herhangi bir birim
cifti arasinda dogrudan baglanti saglayan bir agdir. Genellikle UMA
coklu islemcilerinde islemcileri bellek modillerine baglamak icin
kullanihir. Ayni hedef birden fazla istegin hedefi degilse bircok es

zamanli aktarima olanak tanir.
Ornegin, Sekildeki gibi bir
anahtar koleksiyonundan
olusan bir capraz cubuk
kullanarak yukarida sunulan
UMA dizenindeki yapi
uygulanabilir.

Burada n islemci ve k bellek
icin n x k anahtara ihtiyac
vardir.

J

.01

Py

1.0

1

Ref. [1]

M,

>

BILECIK SEYH EDEBAL
UNIVERSITES

BELLEK PAYLASIMLI COK iISLEMCILi SISTEMLER / Arabaglant: Aglari

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Mesh (orgu) ag: Cok sayida diigiimu birbirine baglamak
icin sekildeki gibi 2 boyutlu bir 6rgtlt ag kullanilabilir.
Mesh'in her bir dahili digimd, yatay ve dikey komsularinin
her birine bir tane olmak lGzere dort baglantiya sahiptir.

Mesh'in sinirlari ve koselerindeki digiimler daha az
komsuya ve dolayisiyla daha az baglantiya sahiptir. Aksi
takdirde mesh'te birbirinden ¢cok uzakta olacak digimler
arasindaki iletisimin gecikmesini azaltmak icin, agin zit
sinirlarinda bulunan digimler arasinda sarmal baglantilar
olusturulabilir. Bu tur baglantilara sahip bir aga torus denir.

Bir torustaki tim dugumlerin dort baglantisi vardir.
Ortalama gecikme azalir, ancak bir torus tzerinden

istekleri

ve yanitlari
yonlendirmenin uygulama
karmasikhgi, basit bir
mesh durumunda
oldugundan biraz daha
yuksektir.

O O O O

Q
Ref. [1]

o,
O
o,

Onbellek Tutarhligi (CACHE COHERENCE): Paylasimli
bellekli cok islemcili bir sistemin programlanmasi kolaydir.
Bir programdaki her degiskenin bellekte 6zel bir konumu
vardir. Bu konuma herhangi bir islemci erisebilir. Her
islemcinin kendi 6nbellegi vardir. Bu nedenle, paylasilan
verilerin kopyalarinin birden fazla dnbellekte bulunma
olasiligi sorun teskil eder. Oyle ki, herhangi bir islemci kendi
onbellegindeki paylasilan bir degiskene yeni bir deger
yazdiginda, bu degiskenin bir kopyasinin oldugu tim
onbellekler eski, yanlis degere sahip olacaktir. Bu nedenle
degisikliklerin bildirilmesi gerekir, boylece kopyalari yeni
degere glincellenebilir veya gecersiz kilinabilir. Buna birden
cok dnbellekte paylasilan verilerin tutarh bir gériiniimtne
sahip olmayi gerektiren onbellek tutarliigini koruma denir.

Bir dnbellekteki veriler lizerinde yazma islemleri
gerceklestiren iki temel yaklasimdan biri olan yazma-gegis
yaklasimi hem onbellekteki hem de ana bellekteki verileri
degistirir. Geri yazma yaklasimi ise, yalnizca 6nbellekteki
verileri degistirir; dnbellekteki degistirilmis bir veri
blogunun degistirilmesi gerektiginde ana bellek kopyasi
glncellenir. Cok islemcili bir sistemde 6nbellek tutarhligini
ele almak icin benzer yaklasimlar kullanilabilir.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

ONBELLEK TUTARLILIGI (CACHE COHERENCE)

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Yazma Protokolii : Yazma protokolu iki sekilde
uygulanabilir. Bir versiyon, diger 6nbelleklerdeki degerleri
glncellerken, ikinci versiyon diger 6nbelleklerdeki
kopyalari gecersiz kilar.

Once giincelleme protokoliinii ele alalim. Bir islemci
onbellegindeki bir veri bloguna yeni bir deger yazdiginda,
yeni deger ayni zamanda degistirilen blogu iceren bellek
moduliine de yazilir. Bu blogun kopyalari diger
onbelleklerde mevcut olabileceginden, bu kopyalar yazma
isleminin neden oldugu degisikligi yansitacak sekilde
glncellenmelidir. Bunu yapmanin en basit yolu, yazilan
verileri sistemdeki tiim islemcilerin 6nbelleklerine
yayinlamaktir. Her islemci yayinlanan verileri aldiginda, bu
blok 6nbelleginde mevcutsa etkilenen 6nbellek blogunun
icerigini gunceller.

Yazma protokoltnin ikinci versiyonu kopyalarin gegersiz
kilinmasina dayanir. Bir islem 6nbellegine yeni bir deger
yazdiginda, bu deger de bellekteki uygun konuma
gonderilir ve diger onbelleklerdeki tiim kopyalar gegersiz
kilinir. Bunun ardindan yine, gegersiz kilma isteklerini
sistem genelinde gondermek i¢in yayinlanabilir.

Geri Yazma Protokolii : Geri yazma protokoliyle tutarhihigin
surdarulmesi, bellekteki bir veri blogunun sahipligi
kavramina dayanir. Baslangicta, bellek tiim bloklarin
sahibidir ve bellek, 6nbellegine bir kopyasini yerlestirmek
icin bir islemci tarafindan okunan herhangi bir blogun
sahipligini korur.

Bir islemci dnbellegindeki bir bloga yazmak isterse, 6nce bu
blogun 6zel sahibi olmalidir. Bunu yapmak icin, diger
onbelleklerdeki tim kopyalar dnce bir yayin istegiyle
gecersiz kilinmalidir. Blogun yeni sahibi daha sonra baska
bir islem yapmak zorunda kalmadan igerigi istedigi gibi
degistirebilir.

Baska bir islemci degistirilmis bir blogu okumak istediginde,
blok icin istek gecerli sahibine iletilmelidir. Veriler daha
sonra gecerli sahibi tarafindan istekte bulunan islemciye
gonderilir. Veriler ayrica, sahipligi yeniden edinen ve
bellekteki blogun icerigini glincelleyen uygun bellek
modiiliine de gdénderilir. Onceki sahibi olan islemcinin
onbellegi, blogun bir kopyasini tutar. Bu nedenle, blok artik
iki onbellekteki ve bellekteki kopyalarla paylasilir. Diger
islemcilerden ayni blogu okumak icin gelen sonraki istekler,
blogu iceren bellek moduli tarafindan karsilanir.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

ONBELLEK TUTARLILIGI (CACHE COHERENCE)

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Geri Yazma Protokolii : Baska bir islemci degistirilmis bir
bloga yazmak istediginde, gecerli sahip verileri istekte
bulunan islemciye gonderir. Ayrica blogun milkiyetini
istekte bulunan islemciye aktarir ve 6nbellege alinmis
kopyasini gecersiz kilar. Blok yeni sahip tarafindan

degistirildigi icin, bellekteki blogun icerikleri giincellenmez.

Ayni blok icin bir sonraki istegi yeni sahip karsilar.

Geri yazma protokoliiniin, yazma-gecis protokoliinden
daha az trafik olusturma avantaji vardir. Bunun nedeni, bir
islemcinin bu bloga baska bir islemci tarafindan ihtiyag
duyulmadan énce bir 6nbellek bloguna birka¢ yazma
gerceklestirme olasiliginin yuksek olmasidir. Geri yazma
protokoliyle, bu yazmalar yalnizca 6nbellekte
gerceklestirilir ve gecersiz kilma istegiyle sahiplik edinilir.
Yazma-gegis protokoluyle, her yazma islemi uygun bellek
moduliinde de gerceklestirilmeli ve diger dnbelleklere
yayinlanmalidir.

Simdiye kadar, bu protokollerdeki glincelleme ve gecersiz
kilma isteklerinin ara baglanti agi Gzerinden yayinlandigini
varsaydik. Bu tlr yayinlarin uygulanmasinin kolay olup
olmadigl bliylik 6l¢iide ara baglanti aginin yapisina baghdir.

Yayinciligl desteklemek icin en dogal ag tek yoludur. Az
sayida islemciyi tek bir yol kullanarak bellek modiillerine
baglayan coklu islemcilerde, 6nbellek tutarliligi snooping
olarak bilinen bir sema kullanilarak gerceklestirilebilir.

Snoopy (merakl) Onbellekler: Tek yol sisteminde,
islemciler ve bellek modiilleri arasindaki tiim islemler
yoldaki istekler ve yanitlar araciligiyla gerceklesir. Aslinda,
yola bagli tiim birimlere yayinlanirlar. Her islemci
onbelleginin yoldaki tim islemleri gézlemleyen veya
gozetleyen bir denetleyici devresi oldugunu varsayalim.
Simdi geri yazma protokoll ve 6nbellek tutarliliginin nasil
uygulandigina iliskin bazi senaryolari aciklayalim.

Daha once bellekten 6nbellegine bir blogun kopyasini
okuyan bir islemci, bu bloga ilk kez yazmadan 6nce, islemci
diger tim onbelleklere bir gecersiz kilma istegi
yayinlamalidir. Bu istegi onbellek denetleyicileri kabul eder
ve ayni blogun tim kopyalarini gecersiz kilar. Bu eylem,
istekte bulunan islemcinin blogun yeni sahibi olmasina
neden olur. islemci daha sonra bloga yazabilir ve onu
degistirilmis olarak isaretleyebilir. Ayni islemcinin degismis
onbellek bloguna yazmak icin baska yayinina gerek yoktur.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

ONBELLEK TUTARLILIGI (CACHE COHERENCE)

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Snoopy (merakl) Onbellekler: Simdi, baska bir islemci
ayni blok icin yolda bir okuma istegi yayinlarsa, bellek yanit
vermemelidir ¢ciinkii blogun gecerli sahibi degildir. istenen
bloga sahip olan islemci, yoldaki okuma istegini dinler.
Onbelleginde istenen blogun degistirilmis bir kopyasini
tuttugu icin, bellegin yanit vermesini 6nlemek icin yola
ozel bir sinyal verir. Ardindan, blogun bir kopyasini yayinlar
ve kopyasini degistiriimemis olarak isaretler. Yoldaki yaniti,
okuma istegini yayinlayan islemcinin énbellegi kabul eder.
Bellek te, yaniti, blogun kopyasini glincellemek icin kabul
eder. Bu durumda, bellek blogun sahipligini yeniden
kazanir ve blogun kopyalari iki islemcinin énbelleklerinde
oldugundan blogun paylasimli bir durumda oldugu
sdylenir. Onbellege alinan iki kopya ve bellekteki blogun
kopyasi ayni verileri icerdiginden tutarhlik korunur.
islemcilerden gelen sonraki istekleri bellek karsilar.

Simdi, iki islemcinin kendi dnbelleklerinde ayni blogun
kopyalarinin bulundugu ve her iki islemcinin de ayni anda
ayni 6nbellek bloguna yazmaya ¢alistigi duruma bakalim.
Blok paylasimli oldugundan, bellek blogun sahibidir. Bu
nedenle, her iki islemci de gegersiz kilma mesajini
yayinlamak icin yolu kullanmayi talep eder.

Yolun kullanimi 6nce islemcilerden birine verilir. Bu islemci
gecersiz kilma talebini yayinlar ve blogun yeni sahibi olur.
Dinleme yoluyla, diger islemcinin 6nbellegindeki blogun
kopyasi gecersiz kilinir. Diger islemciye daha sonra yolun
kullanimi verildiginde, yalnizca okunabilir bir talep yayinlar.
Bu talep, ayni blok icin bir okuma talebini ve gecersiz kilma
talebini birlestirir. ilk islemcinin denetleyicisi yalnizca
okunabilir talebi dinler, yolda bir veri yaniti saglar ve
onbellegindeki kopyayi gecersiz kilar. Bu nedenle blogun
milkiyeti, talebi yapan ikinci islemciye aktarilir. Blok tekrar
degistirildigi icin bellek giincellenmez. iki islemciden gelen
talepler sirayla islendiginden, dnbellek tutarliligi korunur.
Bu sema, dnbellek denetleyicilerinin yolun etkinligini
gozleme ve uygun eylemi gerceklestirme yetenegine
dayanir. Bu tir semalara snoopy-cache yontemleri denir.

Performans nedenleriyle, snooping islevinin bir islemcinin
ve Onbelleginin normal calismasina miidahale etmemesi
onemlidir. Cogu kez, dnbellek bir istekle ilgili blogun gecerli
bir kopyasini icermez. Gereksiz midahale yapmamak icin,
her dnbellege dnbellekteki bloklar hakkinda ayni durum
bilgilerini koruyan ancak dinleme devresi tarafindan ayri
ayri erisilebilen bir dizi yinelenen etiket saglanabilir.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

DiZiN TABANLI ONBELLEK TUTARLILIGI / MESAJ GECIREN COKLU BiLGiSAYARLAR

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Dizin Tabanli Onbellek Tutarliligi: Snoopy énbellekleri
kavraminin tek yol sistemlerinde uygulanmasi kolaydir.
Blyulk bellek paylasimli cok islemcili sistemler, halka ve
mesh gibi ara baglanti aglarini kullanir. Bu tir sistemlerde,
her bir istegi tim islemcilerin 6nbelleklerine yayinlamak
verimsizdir. Bu soruna olceklenebilir ancak daha karmasik
bir ¢6ziim, hangi digimlerin paylasimli durumda belirli bir
blogun kopyalarina sahip olabilecegini belirtmek icin her
bellek modultindeki dizinleri kullanir.

Bir blok degistirilirse, dizin gecerli sahibi olan digim{i
tanimlar. Bir islemciden gelen her istek 6nce ilgili blogu
iceren bellek modiliine gonderilmelidir. Bu bloga ait dizin
bilgileri, gerceklestirilen eylemi belirlemek icin kullanilir.
Blok degistirilirse, okuma istegi gecerli sahibine iletilir.
Paylasilan bir blok icin bir yazma istegi durumunda, tek tek
gecersiz kilmalar yalnizca s6z konusu blogun kopyalarina
sahip olabilecek diigiimlere génderilir. Onbellek tutarliligini
uygulamaya yonelik dizin tabanli yaklasimin maliyeti ve
karmasikligi, kullanimini buytk sistemlerle sinirlar.

Gunumuzdeki ¢cok ¢ekirdekli yongalar da dahil olmak tzere
kiicik cok islemcili cihazlar genellikle dinlemeyi kullanir.

Mesaj Gegiren Coklu Bilgisayarlar: Coklu islemcileri
kullanmanin farklh bir yolu, sistemdeki her digiimi kendi
bellegine sahip tam bir bilgisayar olarak basitlestirmektir.
Sistemdeki diger bilgisayarlarin bu bellege dogrudan erisimi
yoktur. Paylasilmasi gereken veriler, bir bilgisayardan
digerine mesaj gonderilerek degistirilir. Bu tlir sistemlere
mesaj geciren ¢oklu bilgisayarlar denir.

Paralel programlar, mesaj geciren ¢oklu bilgisayarlar igin
paylasimli bellekli ¢oklu islemcilerden farkh sekilde yazilir.
Diaglmler arasinda veri paylasmak icin, verinin kaynagi olan
bilgisayarda calisan program, hedef bilgisayara veriyi iceren
bir mesaj gondermelidir. Hedef bilgisayarda ¢alisan
program mesaji alir ve veriyi o diguimun bellegine kopyalar.

Mesaj gecisini kolaylastirmak icin, her duglimdeki 6zel bir
iletisim birimi genellikle gonderilen ve alinan mesajlarin
bicimlendirilmesi ve yorumlanmasinin dusuk seviyeli
ayrintilarindan ve mesaj verilerinin digiimuin bellegine
kopyalanmasindan sorumludur. Her digiimdeki bilgisayar,
iletisim birimine komutlar verir. Bilgisayar daha sonra diger
hesaplamalari yapmaya devam ederken, iletisim birimi
mesaj gonderme ve alma ayrintilarini halleder.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

COKLU iSLEMCILER iCiN PARALEL PROGRAMLAMA

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Coklu islemciler icin Paralel Programlama:

Onceki béliimlerde, uygulama programlarinda
paralellikten yararlanabilen bellek paylasimli coklu
islemciler icin donanim duzenlemeleri aciklandi. Mevcut
paralellik, bagimsiz gecislere sahip dongtilerde ve ayrica
bagimsiz Ust diizey gérevlerde bulunabilir.

Ust diizey bir dilde yazilmis bir kaynak program, bir
programcinin istenen hesaplamayi anlasilmasi kolay bir
sekilde ifade etmesine olanak tanir. Derleyici tarafindan
makine diline cevrilmesi gerekir. islemcinin donanimi,
programcinin istedigi hesaplamayi gerceklestirmek igin
makine dili komutlarini dogru sirayla yurtutmek tzere
tasarlanmistir. Paralel olarak yurutilebilecek bagimsiz tst
duzey gorevleri otomatik olarak belirleyemez.

Derleyicinin paralelligi algilama ve kullanma konusunda da
sinirlamalari vardir. Bu nedenle, kaynak programdaki
genel hesaplamayi acgik¢a gorevlere bolmek ve bunlarin
birden fazla islemcide nasil yiiritiilecegini belirtmek
programcinin sorumlulugundadir.

Bellek paylasimli ¢ok g¢ekirdekli islemci igcin programlama,
tek islemcili system programlamanin dogal bir uzantisidir.

Yiksek seviyeli bir kaynak programi, tek bir islemci
tarafindan yuritulen gorevler kullanilarak yazilir. Ancak
belirli gorevlerin farkli islemcilerde ayni anda yuritilecegini
belirtmek de mimkinddur. Verilerin paylasimi, atanan
gorevlerini gerceklestirirken farkli islemciler tarafindan
okunan ve yazilan global degiskenleri tanimlayarak
saglanir. Intel IA-32 mimarisini uygulayanlar gibi genel
amacli bilgisayarlarda su anda kullanilan ¢ok cekirdekli
yongalar bu sekilde programlanir.

Paralel programlamayi gostermek icin, her biri N sayi iceren
iki vektorin skaler)dot) carpimini hesaplama 6rnegini ele
alalim. Bu gorev icin bir C dili programi sekilde
gosterilmistir. Burada iki vektorin iceriklerinin
baslatilmasinin ayrintilari, paralel programlamayla ilgili
yonlere odaklanmak icin atlanmistir.

Dongul, N carpimin toplamini biriktirir. Her gecis, onceki
geciste hesaplanan kismi toplama bagldir ve son geciste
hesaplanan sonug skaler carpimdir. Bagimliliga ragmen,
toplamanin iliskisel 6zelliginden yararlanarak programi es
zamanli ylrttme icin bagimsiz gorevlere bolmek
mumkindur. Her gérev kismi bir toplam hesaplar ve nihai
sonuc kismi toplamlarin toplanmasiyla elde edilir.

BILECIK SEYH
UNIVERS

EDEBAL
I'THESS

COKLU iSLEMCILER iCiN PARALEL PROGRAMLAMA

2025-26 GYY DERSI

BM303
BIiLGISAYAR
MIiMARISi ve

ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY

& ACRONYMS

Coklu islemciler icin Paralel Programlama:

Skaler carpimi hesaplamak icin paralel bir program
uygulamada iki sorunun yanitlanmasi gerekir:

e Kismi toplamlari hesaplamak icin birden fazla islemcinin
paralel yliriatmeye katilmasini nasil saglanir?

e Skaler carpimin nihai sonucu hesaplanmadan 6nce her
islemcinin kismi toplamini hesapladigindan nasil emin
olunur?

#include <stdioh> /¥ Routines for input/output. */

#delfine N 100 [Number of elements in each vector. #/

double a[N], b[N]: /# Vectors for computing the dot product. */

vold main (void)
{
nt 1;
double dot_product;

< Initialize vectors a[], b[] — details omitted.>
dot_product = 0.0
for(1=0:;1< N;i1++)

dot_product = dot_product + af1] * b[1];
printf ("The dot product 18 %g\n", dot_product);

} Ref. [1]

Is Parcacigi Olusturma: ilk soruyu cevaplamak icin, farkli
islemcilere atanan gorevlerin nasil tanimlandigina ve bu
gorevlerin birden fazla islemcide nasil ylriatilmeye
baslatildigina bakalim. islemci sayisi, P ve her vektordeki
eleman sayisi, N icin parametreler kullanarak skaler carpim
programinin paralel bir stirimunu yazabiliriz. Basitlestirmek
icin N'nin P'ye esit olarak boltnebildigini varsayalim. Genel
hesaplama, N carpimin toplamintigerir. P islemci icin, her
gorevin N/P carpimin kismi toplaminin hesaplanmasi
oldugu P bagimsiz gérev tanimlariz.

Bir program tek bir islemcide yuratuldaglnde, ylritme
denetiminin etkin bir is pargacigi vardir. Bu is parcacigl,
programin ylrutilmesi basladiginda isletim sistemi (OS)
tarafindan ortuk olarak olusturulur. Paralel bir program icin,
bagimsiz gorevlerin her islemci icin bir tane olmak lzere
birden fazla ylritme denetimi is parcacigi tarafindan ayri
ayri islenmesini gerektirir. Bu is parcaciklari agikca
olusturulmalidir. Tipik bir yaklasim, paralel programlamayi
destekleyen bir kiitiphanede create_thread adli bir rutin
kullanmaktir. Kitliphane rutini, yeni olusturulan is parcacigi
tarafindan yuratilecek bir alt rutine isaretci olan bir giris
parametresini kabul eder.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

COKLU iSLEMCILER iCiN PARALEL PROGRAMLAMA

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Kitiphane rutini tarafindan, farkh bir yiginla yeni bir is
parcacigl olusturmak icin bir isletim sistemi hizmeti ¢cagrilir,
boylece diger alt rutinleri cagirabilir ve kendi yerel
degiskenlerine sahip olabilir. Tim genel degiskenler tim is
parcaciklari arasinda paylasilir.

is parcaciklarini birbirinden ayirmak gerekir. Bir yaklasim, 0
ile P =1f arasindaki her is pargacigi icin 6zglin bir tam sayi
donduren get_my_thread_id adli baska bir kitiphane
rutini saglamaktir. Bir is parcacigi bu bilgiyle, sorumlu
oldugu hesaplama alt kiimesini belirleyebilir.

Bariyer rutinini cagiran her is parcacigi, son is parcacigl
rutini cagirana ve tim is parcaciklarinin yiriitmelerine
devam etmesini saglayana kadar yogun bekleme
dongulstine girer. Bu, is parcaciklarinin bariyer cagrisindan
onceki ilgili hesaplamalarini tamamladigindan emin olur.

Is Pargacigi Senkronizasyonu: ikinci soru, is parcaciklarinin
gorevlerini ne zaman tamamladiginin belirlenmesini igerir,
boylece nihai sonug¢ dogru bir sekilde hesaplanabilir. Bu
nedenle birden fazla is parg¢aciginin senkronizasyonu
gerekir. Birka¢ senkronizasyon yontemi vardir ve bunlar
genellikle paralel programlama igin ek kitiiphane
rutinlerinde uygulanir. Burada, bariyer adi verilen bir
yontemi ele alacagz.

Bir bariyerin amaci, is parcaciklarinin bariyer icin
kiitiphane rutinine bir ¢agrinin yapildigi programdaki
belirli bir noktaya ulasana kadar beklemelerini saglamaktir.

Ornek Paralel Program: is parcacigi olusturma ve
senkronizasyonuyla ilgili sorunlari ve is pargacigi yonetimi
icin saglanan tipik kiittiphane rutinlerini agikladiktan sonra,
simdi bir 6rnek olarak paralel skaler ¢carpim programini
sunabiliriz. Asagidaki sekil, bir ana rutini ve paralel ylrtutme
icin bagimsiz gorevleri tanimlayan ParallelFunction adli
baska bir rutini gosterir. Program yirutilmeye baslayinca,
ana rutini yuraten yalniz bir is pargacigi vardir. Bu is
parcacigi vektorleri, ve ardindan bariyer senkronizasyonu
icin gerekli bir paylasilan degiskeni baslatir. Paralel
ylirutmeyi baslatmak icin, create_thread rutini, her biri
ParallelFunction'i yiiriten ek is pargaciklari olusturmak igin
ana rutinden P-1 kez ¢agrilir. Ardindan, ana rutini yuriten
is parcacigl ParallelFunction'i dogrudan ¢agirir, boylece
toplam P is parcacigi genel hesaplamaya dahil olur. isletim
sistemi yazilimi, is parcaciklarini paralel ylratme igin farkli
islemcilere dagitmaktan sorumludur.

BILECIK SEYH
UNIVERS

EDEBALI
ITESI

COKLU iSLEMCILER iCiN PARALEL
PROGRAMLAMA

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Ornek Paralel Program: Her is parcacigi, 0 ile P-1
araliginda 6zgtn bir tam sayi tanimlayicisi elde etmek
icin ParallelFunction'dan get_my_thread_id'yi cagirir.
Bu bilgileri kullanarak, is parcacigi o is parcaciginin
kismi toplamini Greten donginin baslangic ve bitis
dizinlerini hesaplar. Donglyu ydruttiikten sonra,
sonucu 6zgun tanimlayicisini dizi dizini olarak
kullanarak paylasilan partial_sums dizisinin ayri bir
o0gesine yazar. Ardindan, is parcacigi diger is
parcaciklarinin hesaplamalarini tamamlamasini
beklemek icin bariyer senkronizasyonu igin
kiitiphane rutinini cagirir.

Hesaplamasini tamamlayan son is parcacigi bariyer
rutinini cagirdiktan sonra, tim is parcaciklari
ParallelFunction'a geri doner. ParallelFunction'da
gerceklestirilecek baska bir hesaplama yoktur, bu
nedenle ana rutinde kiitiphane ¢agrisi tarafindan
olusturulan P -1 is parcaciklari sonlanir.
ParallelFunction'i dogrudan ana rutinden g¢agiran is
parcacigl, partial_sums dizisindeki degerleri
kullanarak nihai sonucu hesaplamak icin geri doner.

#include
#include

#define
#define
double
double

Barrier

void

{

void

< stdio.h=
"threads.h"

N 100
P 4

a[N], b[N]:
partial_sums[P];

/* Routines for input/output. */
/* Routines for thread creation/synchronization. */

/¥ Number of elements in each vector. */
/* Number of processors for parallel execution. */

/* Vectors for computing the dot product. */
/* Array of results computed by threads. */

bar; /# Shared variable to support barrier synchronization. */

ParallelFunction (void)

int my_id, i, start, end;
double s;

my_id = get_my_thread_id ();

start = (N/P) * my_id;

end = (N/P) * (my_id + 1) — 1;

s =0.0;

for (1 = start; 1 <= end; i++)
s=s+ali] * b[i];

partial_sums[my_id] = s;

barrier {&bar, P);

main (void)

nt i;
double dot_product;

/# Get unique identifier for this thread. */
/# Determine start/end using thread identifier. %/
/# N 1s assumed to be evenly divisible by P .* /

/# Save result in array. */
/¥ Synchronize with other threads. */

< Initialize vectors a[], b[] — details omitted.>

init_barrier {&bar);
for(i=1l:i< P:it++)

/# Create P — | additional threads. */

create_thread (ParallelFunction);

ParallelFunction();
dot_product = 0.0;
for(1=0;1< P; i++)

/¥ Main thread also joins parallel execution. */
/# After barrier synchronization, compute final result. */

dot_product = dot_product + partial_sums[i];
printf ("The dot product is %gh n", dot_product);

Ref. [1]

BILECIK SEY
UNIVER

H EDEBALI
SITESI

PERFORMANS MODELLEME

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

Onceki sekildeki program, is parcacigi olusturma ve senkronizasyonunu géstermek icin genel kiitiiphane rutinlerini
kullanir. C dilinde paralel programlama igin biiylk bir rutin koleksiyonu IEEE 1003.1 standardinda tanimlanmistir. Bu
koleksiyon ayrica POSIX is parcaciklari veya P is parcacigl kiitiiphanesi olarak da bilinir. Cesitli is pargacigl yonetimi ve
senkronizasyon mekanizmalari saglar. Bu kiitiphanenin uygulamalari, cok islemcili programlamayi kolaylastirmak icin

yaygin olarak kullanilan isletim sistemleri icin mevcuttur.

ENG. TERMINOLOGY
& ACRONYMS

Performans Modelleme: Bilgisayarin en 6nemli performans
Olclisli, programlari ylratme hizdir. Bir islemciye komutlarin
getirilip yuritaldigi hiz, komut seti mimarisi ve donanim
tasarimi ile belirlenir. Ylruatilen toplam komut sayisi da,
derleyici ve komut seti mimarisi tarafindan belirlenir. Bir
islemciicin hususlari belirleyen disik seviyeli bir
matematiksel performans modelini daha 6nce gormiustuk.

Bu modeldeki terimler, yurutilen komut sayisi, komut
basina ortalama dongl sayisi ve saat frekansidir. Bu model,
yeterince ayrintil bilgi ile ylratme siresini tahmin edebilir.

Daha az ayrintili bilgiye dayanan daha yuksek seviyeli bir
model, performanstaki olasi iyilestirmeleri degerlendirmek
icin kullanilabilir. Bilgisayarlarda ylritme siresi | 7,,;, |olan
bir programi ele alalim. Amacimiz, paralel isleme gibi bir
performans iyilestirmesi sunuldugunda ylrttme siiresinin
ne Olcude azaltilabilecegini degerlendirmektir.

Yiritme sdresinin bir kisminin| feun | 'in iyilestirmeden
etkilendigini varsayalim.Kalan kesir, | funenr = 1 — fent|,
degismez. p, zamanin | fean X Torig| kisminin performans

artisi nedeniyle azaldigi faktori temsil etsin. Yeni ylritme

suresi soyle olur: Toow = Torie Funents + fot /)

Hizlanma, | Torie/Tuen |veya | 1/ (usens + feur/P) | oramidir

Bu hizlanma ifadesi Amdahl Yasasi olarak bilinir. Belirli bir
performans artisinin, ytritme stresinin daha blylk bir
kismini etkilemesi durumunda faydasinin arttigina dair
sezgisel gozlemi ifade etmenin bir yoludur.

Orijinal ylrttme siresinin bir dékiimu belirlendikten
sonra, olasi hizlanma igin bir Gst sinir belirlemek genellikle
yararlidir. Bunu yapmak i¢in, p =>e'nin ylritme siiresinin
fenh kesrinin sifira ideal ancak gercek¢i olmayan azalmasini
yansitmasini saglariz.

BILECIK SEYH
UNIVERS

>

EDEBAL
I'THESS

PERFORMANS MODELLEME

2025-26 GYY DERSI

BM303
BIiLGISAYAR
MIiMARISi ve

ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY

& ACRONYMS

Sonugctaki hizlanma | 1/funenn |'dir, bu da gelistiriimeyen yiritme siresi kisminin performans tzerindeki sinirlayici faktor
oldugu anlamina gelir.

' funent|'in daha kiicuk bir degeri hizlanmada daha buiytik bir sinir verir. Ornegin,| finens = 0.1}, 10'luk bir Gst sinir verir,
ancak | funenn = 0.05 |, 20'lik daha blyuk bir sinir verir. Ancak, gercekgi bir p degeri kullanilarak beklenen hizlanma
normalde st sinirin oldukga altindadir. Ornegin, | funenn = 0.05 [ile p = 16 kullanildiginda, yalnizca 1/(0,05 + 0,95/16) =
9,1'lik bir hizlanma elde edilir, bu da 20'lik Gst sinirin oldukga altindadir.

Bu tartismadan ¢ikan 6nemli sonug, gelistirilmis kisim keyfi olarak buyuk bir faktorle iyilestirilmis olsa bile, orijinal
yurutme siresinin gelistiriimemis kisminin elde edilebilir hizlanmayi 6nemli dl¢tide sinirlayabilecegidir. Bir programci,
belirli bir gelistirmeyi uygulamadan 6nce yiritme stresinin | funent| ve| fenn | kesirlerini yaklasik olarak bile
belirleyebiliyorsa,

Amdahl Yasasi beklenen iyilestirmeye iliskin yararli bir icgori saglayabilir.

Bu bilgi, performanstaki beklenen kazanimin gelistirmeyi uygulamak icin harcanan ¢aba ve masrafi hakli ¢cikarip
ctkarmadigini belirlemek icin kullanilabilir.

REFERANSLAR
i

BILECIK SEYH EDEBALI
UNIVERSITESI

2025-26 GYY DERS| 1- Hamacher, C., Vranesic, Z., Zaky, S. and Manjikian, N. (2012). Computer
Bi_?gs?;?(ik Organization and Embedded Systems. McGraw Hill, New York.
ORGANIZASYONU ISBN 978—0-07-338065-0

Prof. Dr. A. Akbasg

2- Bryant, R.E. and O’Hallaron, D.R. (2016). Computer Systems, A Programmer’s
| Perspective. Pearson Education Limited, Malaysia. ISBN 10: 1-292-10176-8

1l 3- Mono, M.M. (2001). Bilgisayar Sistem Mimarisi. Literatlr Yayinlari, istanbul.
ISBN 975-843-31-5

4- Stallings, W. (2005). Computer Organisation and Architecture, Designing for
Performance. Pearson, Prentice Hall, NJ. ISBN 0-13-607373-5

5- Abd-El-Barr, M. and El-Rewini, H. (2005). Fundamentals of Computer
Organization and Architecture. Wiley-Interscience, Hoboken-New Jersy.
ISBN 0-471-46741-3

6- Reynolds, C. and Tymann, P. (2008). Principles of Computer Science. McGraw-Hill
Schaum’s Outline Series, New York. 0-07-151037-0

7- v.b internet siteleri

Kaynaklar

https://www.wikipedia.com/

(1L L) 2111k
aee iREREN’
A LLLLY /A
ALLLLIT |
ERREEN))
AR R R
seseens))

TITIIL .
TTITIIL S
TITITL
TITIILL
TITLLEXTT AN
5 " _‘4”
. 1 RN
, X
- A K
-+
- &
t -
1Y F 4

ssssnas /7. ?’z
T T Y/ .
T TTTY/ZI 1T

-~

e

eSS EEPEESESEESEERE RN E SRS

DERSININ SONU

=
LL
<
L
‘=
O
<
oN
—

https://translate.google.com/?um=1&ie=UTF-8&hl=en&client=tw-ob#auto/en/Gereksinimleri%20belirlemeye%20y%C3%B6nelik%20olarak%20bir%20sistemi,%20s%C4%B0stem%20par%C3%A7as%C4%B1n%C4%B1%20ya%20da%20s%C3%BCreci%20analiz%20eder,%20alternatifleri%20m%C3%BChendislik%20y%C3%B6ntemlerini%20kullanarak%20k%C4%B1yaslar,%20en%20uygun%20%C3%A7%C3%B6z%C3%BCm%C3%BC%20tasarlar.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

