-r:.‘viﬁim..'----«-
sEee’ /—-—

-4 lﬁ i
.'. l

d l‘t‘ 2 B

) O

®

AR R R R A

| ® BILECIK SEYH EDEBALI/
Ders Kodu : BM303 . . UNlVERSlTESI

L+T+P :0-3-1

AKTS 4 Dersi Veren : MuUhendislik Fakultesi
Prof. Dr. Ahmet Akbas Bilgisayar MUh. Bolumu

EEEEEEN « I d
EEEEEs FR (
ERase FL Al
aees 4RBAN.

.

sanmun A
A LLLLY
QLLLLUOT |
EEEEEN)
SERREE) et
sSEsEae;
TIILLL
ssasae
sSaEsnes
SEeEEaEs
TII LAY L

n
£
"
(4
&
[
«
-
=
L]
&
@
£
B
i
1.3
L3
B
i
&
4
®
S
Ly
B8
Lid
&
il
]
&
'» |
@

SoC Tasarimi

14.ncii HAFTA DERSI
ARM lIslemciler, FPGA ve

https://translate.google.com/?um=1&ie=UTF-8&hl=en&client=tw-ob#auto/en/Gereksinimleri%20belirlemeye%20y%C3%B6nelik%20olarak%20bir%20sistemi,%20s%C4%B0stem%20par%C3%A7as%C4%B1n%C4%B1%20ya%20da%20s%C3%BCreci%20analiz%20eder,%20alternatifleri%20m%C3%BChendislik%20y%C3%B6ntemlerini%20kullanarak%20k%C4%B1yaslar,%20en%20uygun%20%C3%A7%C3%B6z%C3%BCm%C3%BC%20tasarlar.

D>

BILECIK SEYH
UNIVERS

14.ncii HAFTA DERSI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

Ders igerigi :

e GOmUli
Sistemler

e SoC

* FPGA

e ARM
islemciler

e Komut seti
mimarisi

e Giris/cikis
yetenegi

e GOmula

uygulamalar
icin destek

1- Bilgisayar Sistemlerine Giris (Fonksiyonel Birimler, Sistem Mimarisi, Performans, Teknolojik Arka Plan);

2- Programci Bakis Agisiyla bir Sistem Turu;

3- Bilgisayar Sistemlerinde Bilginin (information) Temsili ve Maniiplasyonu;

4- Komut Seti Mimarisi, Programlarin Makine Diizeyinde Temsili-1 (RISC ve CISC mimariler);

5- Komut Seti Mimarisi, Programlarin Makine Diizeyinde Temsili-ll (IA-32 ve x86-64 mimarileri);

6- islemci ve Giris/Cikis Birimleri Arasinda Veri Transferi (Program Kontrollii G/C, Kesmeli G/C);

7- Yazihm (Program Hazirlama ve Calistirma Siirecleri, C ve Assembly Dilleri Arasindaki Etkilesim, isletim Sistemleri);
8- islemci (CPU) Birimi (Fonksiyonel Birimler, Komut Getirme vr Yiiriitme Adimlari, Kontrol Sinyalleri, HDL);

9- Program Performansinin Optimizasyonu (Komut Diizeyinde Paralelleme, Es-zamanlilik, Stiperskaler islemciler);
10- Giris/Cikis Organizasyonu (Yol Yapisi, Yol Hakimligi, Arayiz Devreleri, Ara-baglanti Standartlari);

11- Bellek Sistemi (Temel Bellek Devreleri, Ana Bellek Organizasyonu, Bellek Teknolojileri);

12- Aritmetik (Tam Sayi ve Kayan Noktali Sayilar icin Aritmetik islem Devreleri);

13- Paralel Calisma ve Performans (Coklu is Parcalari, Vektérel Siiregler, Paylasimli Bellekli Coklu islemciler);

14- ARM islemciler, FPGA ve SoC Tasarimi.

BILECIK SEY
UNIVER

>

H EDEBALI
SITESI

GOMULU SISTEMLER

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Gomiilii sistemler, genel amacgli hesaplama yerine belirli bir
fiziksel strecle ilgili verilerin islendigi, haberlesme ve/veya
kontrol gibi 6zel bir takim gorevlerin gerceklestirildigi
bilgisayar sistemleridir. Temel ilkeleri genel amacli bilgisayar
sistemleri ile aynidir. Genellikle sistem acildiginda otomatik
olarak yurutilmeye baslanan tek bir uygulama programini
yurutdr ve bir isletim sistemi destegine ihtiya¢c duymazlar.
Ancak, tasarimcilarin komut seti, programlama, giris/cikis
yontemleri, bellek yapilari ve sisteme dahil olabilecek gesitli
cihazlarla ilgili arayliz semalari hakkinda kapsamli bir bilgiye
sahip olmasi gereklidir.

Gomula sistemlerin bellek gereksinimleri az oldugundan
sistem tasarimi igin genellikle yeterli gip Ustl bellege sahip
mikrodenetleyiciler kullanilir. Yiksek hesaplama kapasitesi

ile beraber maliyet ve gli¢ tiketiminin nispeten distk
olmasi gereken gomull uygulamalar icin ARM mimarisi
caziptir. ARM islemci ¢ekirdekleri tim sistemin bir ¢ip
uzerinde gerceklestirme amacina uygundur. Bu kapsamda
ARM6, ARM7, ARM9, ARM10 ve ARM Cortex dahil olmak
Uzere bir dizi ARM islemci ¢ekirdegi gelistirilmistir. Bununla
beraber, ARM mikrodenetleyiciler pazarda ayrica ayri gipler
olarak da bulunmaktadir.

Temel ARM mimarisi, 32 bitlik bir organizasyon ve tim
komutlarin 32 bit uzunlugunda oldugu bir komut seti
kullanir. Bunun Thumb olarak bilinen ve 16 bitlik
komutlarla 16 bitlik veri transferleri kullanan baska bir
sirimi, ARM komutlarinin bir alt kiimesini kullanir. Ayrica
ARM mimarisinden daha az kaydediciye sahiptir.

Thumb'in bir avantaji, blyik 6lciide 16 bitlik komutlar
iceren programlari depolamak icin daha kicuk bir bellege
ihtiyac duyulmasidir. Bununla beraber, Thumb komutlari

ylirutme slrecinde, normal 32 bitlik ARM komutlarina

genisletilerek kullanilir.

Bu dersin ilk haftalarinda tanistigimiz sembolik makine dili

(assembly) programlarin bir kismi ARM islemcilerin komut

seti kullanilarak yazilmistir. Tim ARM islemcileri temel bir
makine komut setini paylasir.

Burada kullanilan ISA siirtimii, ARM tarafindan suirim 4
olarak adlandirilir.

ileri sirimlerde, bu derste verilen érneklerde gériilmeyen
uzantilar eklenmistir. Bu uzantilardan bazilari bu derste
kisaca 6zetlenecektir.

BILECIK SEYH
UNIVERS

EBAL

ED
I'THESS

ARM iSLEMCILER ve SoC

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Basit gomull sistem uygulamalari pazarda mevcut
cesitli mikrodenetleyici yongalariyla gerceklestirilebilir.
Daha karmasik fonksiyonlar icin, gticli islemci veya
mikrodenetleyicilerin kullanilmasi gerekir. Bu amacla,
guclu islemci cekirdeklerinin belirli gorevleri
gerceklestiren hazir cevresel moduller ile entegre
edildigi sistemler gelistirilir. Bu kapsamda, ARM komut
setinde yer almayan kayan noktali sayilar Gzerinde
aritmetik islemler, dijital sinyaller veya video verilerinin
islenmesi gibi uygulamalari gerceklestirmek icin
yardimci islemciler (coprocessor) kullanilir.

Yardimci islemci birimini ARM islemcisiyle
blutlnlestiren tek bir ¢ip, temel bir ARM islemcisini
tanimlayan yazilimla birlestirilerek sentezlenebilir.

Yardimci islemcileri kullanan programlar ARM komut
setine eklenen uzantilarla kolayca gergeklestirilebilir.
Bu sekilde tek bir yonga veya baskili devre lizerinde
entegre edilen bilgisayar sistemleri Tek Yongali Sistem
(SoC, System on Chip) seklinde anilir. ARM islemcisinin
tasariminin temel amacglarindan biri de, onu SoC
sistem ortaminda kullanima uygun hale getirmektir.

Gunumuzde cok sayida firma, tasarimci firmalarla lisans
anlagmalari yaparak belirli bir uygulama icin gerekli islemci
cekirdegi ve diger modullerin fikri miilkiyet (intellectual
property, IP) haklarini satin almakta ve bu bilesenleri kendi
tasarladiklari SoC sistemine entegre etmektedirler. Bu
yaklasimla gelistirilmis iki ayri SoC sistem 6rneginin goruntileri
(ESP32 DEVKITC ve Raspery Pico W) asagida verilmistir.

SoC sistemlerinde entegre edilen yardimci islemciler, pazarda
mevcut islemci, bellek, giris/cikis arayizleri, A/D, D/A veya DSP
gibi ayrik devre modiilleri olabilir. Pazara genellikle asagidaki
resimlerdeki gibi iki sirali pinlerle donatilmis bir entegre devre
seklinde sunulan bu sistemlerin tasarimi, uygulamaya o6zel
diger bilesenleri de icerecek sekilde bilgisayar destekli tasarim
(CAD) araclari kullanilarak tamamlanmaktadir.

5V Power On LED I/O Connector

EN Button
Micro USB Port ESP32-WROOM-32

Boot Button

USB-to-UART Bridge Optional Space for ESP32-WROVER

Ref. [5]

D>

BILECIK SEYH EDEBAL
UNIVERSITES

FPGA ile SoC TASARIMI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

CAD uygulamalari ile 6zel bir ¢ipin tasarlanmasinda

maliyeti dnemli bir faktordir. Bu tir ciplerin tGretimi

pahalidir ve daha iyi performans ve daha disuk glic
tuketimi sunsalar bile, ancak ¢ok sayida Uretilerek
maliyetlerinin dusirulmesi halinde kullaniimalari

uygundur. Bu durumda alternatif olarak Alanda
Programlanabilir Kapi Dizisi (Field Programmable Gate
Array, FPGA) Grunleri kullanilabilir.

FPGA Ureticileri, gomulu sistemlerin tasarimini
nispeten kolaylastiran gticlii CAD araclari saglar.
Tasarimcl, dnceden tanimlanmis ¢esitli moddlleri dahil
ederek ve uygulama gereksinimlerine uyacak sekilde
parametreler atayarak bir sistem olusturur. Bu tur
modiillere érnek olarak islemci ¢ekirdekleri, Bellek
modiilleri ve arayiizleri, Paralel G/C arayiizleri, Seri
G/C arayuzleri, Zamanlayici/sayag¢ devreleri verilebilir.

GOmulu sistemde ihtiya¢ duyulan tim islevler bu
moddllerle gerceklestirilebilir. Yine de yeterli olmazsa,
ek 6zel devreler tasarlanarak sisteme dahil edilir.

SoC tasarimina genellikle, bir islemci ¢ekirdegi ve diger
parametreli modillerden olusan bir alt sistem tanimlama ile
baslanir. Alt sistemi uygulayan bir modil olusturmak icin bir
CAD araci kullanilr.

Bu modulin tanimi bir donanim tanimlama dilinde (Hardware
Design Language, HDL) yapilir. Daha sonra, olusturulan
uygulamaya 6zgu ek devrelerle birlikte genel tasarim
ozellestirilir. Genel tasarimi FPGA cihazini yapilandirmak icin
kullanilabilecek bir bicimde sentezlemek ve uygulamak igin
farkli bir CAD araci kullanilir.

Sonug olarak, gomuli sistem tasarimcisi kacinilmaz olarak en
basit ve en uygun maliyetli yaklasimi arar. Tim bir sistemi
uygulamak icin yeterli kaynaklara sahip bir mikrodenetleyici cipi
en iyi secim olabilir. Sistemi gerceklestirmek igin ek ¢iplere
ihtiya¢ duyulursa durum farklidir. Bu durumda sistemi
uygulamak icin daha az cipe ihtiyac duyma olasiliklari yliksek
oldugundan FPGA ¢o6zumleri cazip hale gelir.

Bir FPGA cihazi, tasarimcinin her turla dijital devreyi
tasarlamasina olanak tanir. Modern FPGA cihazlarinda ¢ok
blyulk ve karmasik devreler uygulanabilir.

D>

BILECIK SEYH EDEBAL
UNIVERSITES

ARM iSLEMCILER

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY
& ACRONYMS

Advanced RISC Machines (ARM) Limited, bir RISC tarzi
islemci ailesi tasarlamistir. ARM, bu tasarimlari ¢ip Gretimi
icin diger sirketlere, sistem gelistirme ve similasyon icin
gerekli yazihim araclariyla birlikte lisanslamaktadir. ARM
islemcilerinin ana kullanim alanlari, mobil telefonlar, iletisim
modemleri ve otomotiv motor yonetim sistemleri gibi disik
glc ve diusuk maliyetli gomull sistem uygulamalaridir.

ARM islemcilerin Ozellikleri: ARM islemcilerin kelime
uzunlugu 32 bittir, bellek 32 bit adresler kullanilarak bayt
adreslenebilir ve islemci kaydedicileri 32 bit
uzunlugundadir. Bellek ile islemci kaydedicileri arasinda veri
tasimada 3 farkl operant uzunlugu kullanilir: bayt (8 bit),
yarim kelime (16 bit) ve kelime (32 bit). Kelime ve yarim
kelime adresleri hizalanmalidir, yani sirasiyla 4 ve 2'nin
katlari olmalidir. Hem kii¢likle sonlanan hem de buytkle
sonlanan bellek adresleme semalarini destekler. Secim,
harici bir giris kontrol hatti tarafindan belirlenir.

ARM ISA cogu bakimdan RISC tarzi bir mimariyi yansitir,
ancak bazi CISC tarzi 6zelliklere de sahiptir.

RISC tarzi Ozellikleri:
e Tim komutlarin 32 bit sabit uzunlukludur.
e Yalnizca Load ve Store komutlari bellege erisir.

e Tum aritmetik ve mantik islem komutlari islemci
kaydedicilerindeki operantlar tizerinde calisir.

CISC tarzi Ozellikleri:

e Otomatik artirma, Otomatik azaltma ve PC'ye gore
adresleme modlari saglar.

e Kosul kodlari (N, Z, V ve C) dallanma ve komutlarin
kosullu yurattlmesi igin kullanthr.

e Birden fazla kayit, ardisik bellek soézciklerinden olusan
bir bloktan ylklenebilir veya tek bir komut kullanilarak bir
blokta saklanabilir.

ARM islemcilerin Siradisi Ozellikleri: ARM mimarisi,
modern islemcilerde genellikle bulunmayan bir dizi
ozellige sahiptir. Bunlar, Komutlarin Kosullu Yiiriitilmesi
ve Kaydirma veya Bolme Komutlarinin olmayisidir.

BILECIK SEYH
UNIVERS

EBAL

ED
I'THESS

ARM iSLEMCi KAYDEDICILERI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Komutlarin Kosullu Yiiratilmesi: ARM islemcilerinin sira disi
bir 6zelligi, tim komutlarin kosullu olarak yirattlmesidir. Bir

komut, yalnizca kosul kodu bayraklarinin gecerli degerleri
komutun 4 bitlik bir alaninda belirtilen kosulu karsiliyorsa
yurutalar. Aksi takdirde, islemci bir sonraki komuta gecer.
Olasi kosullardan biri, komutun her zaman yuiruatulecegini
belirtir. Kosullu yuritmenin yararlhgi, ileride bir 6rnekle
gosterilecektir. Simdilik, kosul alaninin "her zaman
yurutilen" kodu belirttigini varsayacagiz.

Kaydirma veya Bolme Komutlari Yok: Kaydirma komutlari
acikca saglanmaz. Ancak, aritmetik, mantik ve tasima
komutlarindaki bir anlik deger veya kaydedici
operantlarindan biri, bir islemde kullanilmadan 6nce
ongorilen miktarda kaydirilabilir. Bu 6zellik, kaydirma
komutlarini 6rtik olarak uygulamak icin de kullanilabilir.

Bircok farkh Carpma komutu vardir ve bunlarin ¢cogu sinyal
isleme uygulamalarinda kullanilmak tzere tasarlanmistir.
Ancak donanim Bolme komutu yoktur. Bolme yazilimda
uygulanmalidir.

ARM islemcilerin Kaydedici Yapisi: Kullanici uygulama
programlari icin RO ile R15 arasinda etiketlenen 16 adet
32 bit islemci kaydedicisi vardir. Bunlarin on besi genel
amacl kaydedici (RO - R14) ve R15 de Program Sayacidir
(PC). Genel amaglh kaydediciler bellek adreslerini veya
veri operantlarini tutabilir. R13 ve R14, islemci yigininin
ve alt rutinlerin yonetimiyle ilgili 6zel kullanima sahiptir. .

3l 0

RO
Rl 15
| General
purpose
registers
RI4
3l 0
R15(PC) | | Program counter
3l 30 29 2§ 7 6 4 0
cosw [T [T LT T[Tl] Se
o register
N-Negative
Z-Zero I— Processor mode bits
C—Carry Interrupt disable bits
V-Overflow land F
R
Condition

code
flags

Ref. [1]

BILECIK SEYH
UNIVERS

EDEBALI
ITESI

ARM iSLEMCi KAYDEDICILERI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Kaydedici Yapisi: Bankalanmis kaydediciler adi verilen bir dizi ek
genel amacli kaydedici vardir. Bunlar, RO ila R14 kaydedicilerinin
bazilarinin kopyalaridir. islemci Kullanici modundan diger calisma
modlarina gectiginde farkli bankalanmis kaydediciler kullanilir.
Bankalanmis kaydedicilerin kullanimi, mod anahtarlarinda Kullanici
modu kayit iceriklerinin bir kismini kaydetme ve geri ylikleme
ihtiyacini ortadan kaldirir. Durum kaydedicisinin kaydedilmis
kopyalari, Kullanici modu haricindeki modlarda da mevcuttur.

Bir istisna olustugunda, Kullanici modundan uygun istisna moduna

geciste asagidaki eylemler gerceklestirilir:

1. Program Sayaci'nin (R15) icerikleri istisna modunun bankalanmis
Baglanti kaydedicisine (R14_mode) yiklenir.

2. Durum kaydedicinin (CPSR) icerikleri bankalanmis Kaydedilmis
Durum kaydedicisine (SPSR_mode) yiklenir.

3. CPSR'nin mod bitleri uygun istisna modunu temsil edecek sekilde
degistirilir ve kesme devre disi birakma bitleri I ve F ayarlanur.

4. Program Sayaci (R15), istisna i¢in ayrilmis vektor adresiyle yiklenir
ve bu adresteki komut, istisna hizmeti rutinini baslatmak icin alinir
ve yuratuldr.

General-purpose registers and program counter Ref. [1]
User/System FIQ) IRQ Supervisor Abort Undefined
RO RO RO RO RO RO
Rl Rl Rl Rl Rl Rl
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 B3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 RS RS RS
R Rb R& R R& R&
RT R7 R7 R7 R7 R7
RE RE_fig RE& RE R& R&
R9 R9_fig R9 R9 R9 R9
R10 R1{)_fig R0 R0 Rl R10O
R1l R1l_fig RIl Ell Ell Rll
R12 R12_fig RIZ EIZ El12 R12
R13 RI13_fig R13_irg R13_sve R13_abt R13_und
R4 Rl14_fig Rl4_irg Rl4_sve R4 _abt Rl4_und
R15 R15 RI5 RIS El5 Rl5
Processor status register
CPSR CPSR CPSR CPSR CPSR CPSR
SPSE_fig SPSE_irg SPSE_sve SPSR_abt SPSE_und

BILECIK SEYH
UNIVERS

EDEBAL
[

D i
TESI]

ARM ISLEMCi ADRESLEME MODLARI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Adresleme Modlari: Aninda, Kaydedici, Mutlak, Dolayli ve indeks
adresleme modlarinin hepsi bir bicimde mevcuttur. Genellikle
RISC islemcilerde bulunan bu temel modlara ek olarak, Goreceli
mod ve Otomatik Arttirma ve Otomatik Azaltma modlarinin
varyantlari da saglanir. ARM mimarisinde, bu modlarin cogu
farkli indeksli adresleme modlarindan tiretilmistir.

3l 28 27

20 19 16 15 12 11

Condition

OP code

En Rd

Offset or Rm

LDE Rd, [Rn, #offset]
Rd « [[Rn] + offset]

LDR Rd. [Rn. Rm]
Rd « [[Rn] 4 [Rm]]

Load ve Store komutlarinin formati

Name Assembler syntax Addressing function

With immediate offset:

Pre-indexed [En, #offset] EA = [Rn] + offset

Pre-indexed

with writeback [Rin, #offset]! EA = [Rn] + offset;

Rn «— [Rn] + offset
EA = [Rn];
Rn «— [Rn] + offset

Post-indexed [Rn], #offset

With offset magnitude in Rm:

Pre-indexed [Rn, & R, shifi] EA = [Rn] £+ [Rm] shifted

Pre-indexed

with writeback [En, £ B, shift]! EA = [Rn] = [Rm] shifted;

Rn «— [Rn] = [Rm] shifted
EA = [Rn];
Rn «— [Rn] £+ [Rm] shifted
EA = Location

= [PC] + offset

Post-indexed [Rin], = R, shift

Relative Location
{Pre-indexed with

immediate offset)

EA = effective address
offset = a signed number contained in the instruction
shift = direction #finteger
where direction is LSL for left shift or LSR for right shift: and
integer is a 5-bit unsigned number specifying the shift amount
+Rm = the offset magnitude in register Em can be added to or subtracted from the

contents of base register Rn

LDR. Rd, [Ru]
RBd «— [[Rn]]

LDR RO, [Rl, —R2]!
RO — [[R1] — [R2]]

LDR RI, ITEM

LDE R0, [R1, —R2, LSL
RO «— [[R1] —16 = [R2]]

Ref. [1]

#4]!

100

1200

Memory |, gord (4 bytes) —— =
address
1000 LDR RI1,ITEM
Bagil 1004
adresleme | |, updated [PC] = 1008
modu T
: 52 = offset
ITEM = 1060 Operand Al—
STR R3, [R5, Ra] 1000 R5
Base register
200 R6
T Offset register
200 = offset
l On-indekslemeli
Onets adresleme modu
perand

Ref. [1]

BILECIK SEYH
UNIVERS

EBAL

E i
I TE:&

D
T

ARM ISLEMCi ADRESLEME MODLARI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Ref. [1]
Memory
uddn.‘\:‘; a——word (4 bytes) ———=
— 100 6 1000 R2
. Base register
100 = 25 x 4 .
25 RI1D
X 1o 17
Offset register
100 = 25 x 4 .
l Load instruction:
1200 321 LDR RI,[R2], R10, LSL #2
Indeksleme sonrasi adresleme
2012 RS
Base register (Stack pointer)
2008 27
27 RO
2012
. . . Push instruction:
after execution of

Push instruction STR RO, [R5, #—4]!

Geri yazmali 6nlindekslemeli adresleme

T updated [PC] =

Offset =92

1000

1004

1008

i LOCATION = 1)

BEQ LOCATION

Bir dallanma komutu igin
hedef adresin belirlenmesi

Branch target instruction

ARM
komutlari
icin kosul

kodlari

Ref. [1]

Condition

field

El]]

00

000

00
00
01
01
01
01
10
10
10
10
11

bZE

0
l
0
l
0
l
i}
l
0
l
0
l
i}
l
i}
l

Condition
suffix

EQ
NE
CS/HS
CC/LO
MI

PL

VS

VC

HI

LS

GE

LT

GT

LE

AL

MName

Equal (zero)

Mot equal (nonzero)

Carry set/Unsigned higher or same
Carry clear/Unsigned lower
Minus (negative)

Plus (positive or zero)
Overflow

No overflow

Unsigned higher

Unsigned lower or same
Signed greater than or equal
Signed less than

Signed greater than

Signed less than or equal
Always

not used

Condition
code
test

Z=1
Z=0
C=1

]]
—_
=

1l
=

| A < = 2 Z2 N
< L]
N2 -
]

g
<
[
Il

N&V=0
NegV=1l
Zv(NgV)i=0
ZviNeaVi=1

BILECIK SEY
UNIVER

>

H EDEBAL
S| TE:S

ARM iSLEMCi KOMUTLARI

2025-26 GYY DERSI

BM303
BIiLGISAYAR
MIiMARISi ve

ORGANIZASYONU
Prof. Dr. A. Akbas

ENG. TERMINOLOGY

& ACRONYMS

ARM Komutlari: ARM mimarisindeki her komut 32 bitlik
bir kelimeye kodlanir. Bellege erisim yalnizca Load ve Store
komutlari tarafindan saglanir. Tim aritmetik ve mantik
islem komutlari islemci kaydedicilerinde calisir.

OP kodu mnemotekleri LDR ve STR ile bayt ve yarim
sozciik degerleri de bellek ve kaydediciler arasinda
aktarilabilir. Operant bir baytsa, kaydedicinin dusuk siral
bayt konumunda bulunur. Yarim sozciikse, kaydedicinin
dusuk sirali yarisinda bulunur. Load komutlari icin, bayt ve
yarim sozciik degerleri, LDRB ve LDRH komut
mnemotekleri kullanilarak 32 bitlik kaydedici uzunluguna
sifir uzatilir veya LDRSB ve LDRSH kullanilarak isaret uzatilir.
Bayt ve yarim sozcik Store komutlari, STRB ve STRH dIr.

Birden Fazla Operanti Yiikleme ve Depolama: Birden fazla
operanti yuklemek ve depolamak icin iki komut vardir.
Bunlara Blok Aktarim komutlar denir. Genel amagl
kaydeicilerin herhangi bir alt kiimesi yiklenebilir veya
depolanabilir. Yalnizca s6zciik operantlarina izin verilir.
Kullanilan OP kodlari LDM (Coklu Yikleme) ve STM'dir
(Coklu Depolama). Bellek operantlari ardisik s6zctik
konumlarinda olmalidir.

On ve son indekslemenin tiim formlari, geri yazma ile ve
geri yazma olmadan kullanilabilir. Bu komutlarda ofset
blyUklGgl her zaman 4'tur, bu nedenle komutta acgikca

belirtilmesi gerekmez. Kaydedici listesi, komutun makine

dili gosteriminde artan sirada gortinmelidir, ancak bitisik
olmalari gerekmez. Kodlanmis makine komutlari b15-0
bitlerinde belirtilir, kaydedici Ri listedeyse bit bi = 1 olur.

Ornegin, kayit R10'un temel kaydedici oldugunu ve
baslangicta 1000 degerini icerdigini varsayalim.

LDMIA R10!,{RO,R1, R6, R7}

komutlari sézctikleri 1000, 1004, 1008 ve 1012
konumlarindan RO, R1, R6 ve R7 kaydedicilerine aktarir ve
son aktarimdan sonra R10'da 1016 adres degerini birakir,
clinkd geri yazma Uinlem isaretiyle gosterilir. OP kodundaki

IA eki, "Sonra Artirma'yi belirtir ve bu da son

indekslemeye karsilik gelir.

Aritmetik islem

SUB RO, R6, RS
Komutlari

RO «— [R6] — [R5]

OF Rd, En, Em

ADD RO, R2, R4
R0 < [R2] + [R4]

ADD RO, R3.#17
RO «— [R3] + 17

ADD RO, R3, #-17
SUB RO, R3 #17

>

BILECIK SEYH EDEBALI
UNIVERSITESI

ARM iSLEMCi KOMUTLARI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

ikinci Kaynak Operantinin Kaydirma veya Dondiiriilmesi:
ikinci kaynak operant bir kaydedicinin icerigi olarak
belirtildiginde, islemde kullanilmadan 6nce kaydirilabilir
veya dondirulebilir. Mantiksal sola kaydirma (LSL),
mantiksal saga kaydirma (LSR), aritmetik saga kaydirma
(ASR) ve saga dondiirme (ROR) kullanilabilir. Tasima biti C,
bu islemlerde yer almaz. Kaydirma veya dondirme, ikinci
kaynak operant icin kaydedici adindan sonra belirtilir.

Carpma MUL RO RI,R2 MLA RO, RI1,R2, R3
Komutlan RO « [R1] x [R2] RO« ([R1] = [R2]) + [R3]

Tagima MOV Rd, Rm MOV RO, #-5
Komutlan MOV Rd, #value MWN RO, #

Kaydirma ve Dondiirme

MOV Ri, Rj, L5L #
Komutlari

Lshifil. Ri, Rj, #4

ADD RO, RI, RS, LSL #4
R5 kaydedicisinde bulunan ikinci kaynak operanti, 4 bit
konumu sola kaydirilir ([R5] x 16'ya esdegerdir), ardindan
R1 kaydedicinin icerigine eklenir. Toplam, RO kaydedicisine
yerlestirilir. Kaydirma veya dondirme miktari, dordincu
kaydin icerigi olarak da belirtilebilir.

Cok Sozcuklu Operantlar: Carry bayragi, C, ¢cok sézcukl
sayllari iceren toplama ve ¢ikarma islemlerini
kolaylastirmak igin kullanilabilir. Bu amagla ayri komutlar
mevcuttur. Bunlarin derleme dili animsaticilari ADC (Carry
ile ekle) ve SBC'dir (Carry ile cikar). iki 64 bitlik operantin
toplanacagini varsayalim. ilk operantin R3, R2; ikinci
operantin R5, R4 kaydedici ¢iftinde bulunuyorsa:

ADC R7,R3,RS5

ADDS R6,R2 R4

Mantiksal islem ve Test Komutlari: AND, OR, XOR ve Bit-
Clear mantik islemleri sirasiyla AND, ORR, EOR ve BIC OP
kodlarina sahip komutlarla uygulanir. Aritmetik islem
komutlari ile ayni formattadirlar.

AND Rd, Rn, Rm
Komutu Rn ve Rm kaydeicilerindeki operantlarin bit

bazinda mantiksal AND islemini gerceklestirir ve sonucu Rd

kaydedicisine yerlestirir. Ornegin, RO 02FA62CA onaltilik
desenini ve R1 0000FFFF desenini iceriyorsa,

AND RO, RO, R1 komutu 000062CA desenini RO’a yerlestirir.

Bit Clear komutu, BIC, AND komutuyla yakindan iliskilidir.
Rm operantindaki her biti, Rn‘deki bitlerle AND islemine
tabi tutmadan once tamamlar. Yukaridaki 6rnekteki gibi

ayni RO ve R1 bit desenleri kullanilarak, BIC RO, RO, R1
komutu 02FA0000 desenini RO'a yerlestirir.

BILECIK SEYH
UNIVERS

EBAL

E
I TE:&

D
T

ARM iSLEMCIiLi PROGRAM ORNEKLERI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

iki 4-bitlik decimal sayiyi bir bayta paketleyen program

LDRE R, =LOC Load address LOC into RO,
LDEE RI,[R0] Load ASCII characters
LDRE R2, [RD, #]1] into R1 and R2.
AND R2. R2, #&F Clear high-order 28 bits of R2.
ORR R2,R2, RI1, LSL#4 Shift contents of R1 left,
perform logical OR with
contents of R2, and place
result into R2.
STRB R2, PACKED Store packed BCD digits
into PACKED.
Ref. [1]
Sayilari toplayan bir program
LDR RI.N Load count into R1.
LDR R2, =NUMI1 Load address NUMI into R2.
MOV RO, #0 Clear accumulator R0,
LOOP LDRE R3, [R2]. #4 Load next number into R3.
ADD RO, RO, R3 Add number into R,
SUBS RI1.RI, #1 Decrement loop counter R 1.
BGT LOOP Branch back if not done.
STR RO, SUM Store sum.
Ref. [1]

LDR R2, =N Load address N into R2.
MOV R3,#0)
MOV R4, #0)
MOV RS, #0
Test LDR R, N Load the value n.
skorlarini LOOP LDR R7, [R2,#8]' Add current student mark
toplayan ADD R3, R3, R7 for Test | to partial sum.
bir LDR R7, [R2, #4]! Add current student mark
ADD R4, R4, R7 for Test 2 to partial sum.
program ve LDR R7,[R2, #4]! Add current student mark
onun ARM ADD R5,R5,R7 for Test 3 to partial sum.
versiyonu SUBS R, R, #1 Decrement the counter.
BGT LOOP Loop back if not finished.
STR R3, SUMI Store the total for Test 1.
STR R4, SUM2 Store the total for Test 2.
STR R5, SUM3 Store the total for Test 3.
Move R2, #LIST Get the address LIST.
Clear R3
Clear R4
Clear R5
Load R, N Load the value n.
LOOP: Load R7. 4(R2) Add the mark for next student's
Add R3, R3, R7 Test | to the partial sum.
Load R7. 8(R2) Add the mark for that student's
Add R4, R4, R7 Test 2 to the partial sum.
Load R7. 12(R2) Add the mark for that student's
Add R5, R5, R7 Test 3 to the partial sum.
Add R2, R2, #16 Increment the pointer.
Subtract R6, R6, #1 Decrement the counter.
Branch_if [R6]=0 LOOP Branch back if not finished.
Store R3, SUMI Store the total for Test 1.
Store R4, SUM?2 Store the total for Test 2.
Store R5, SUM3 Store the total for Test 3.

Ref. [1]

BILECIK SEYH
UNIVERS

EDEBAL
[

D
TE:S

ARM iSLEMCIiLi PROGRAM ORNEKLERI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

LDR
LDE
MOV
LDR
ADD
SUBS
BGT
STR

LOOP

RILN

R2, =NUMI
RO, #0

R3, [R2], #4
RO, RO, R3
RILRI. #1
LOOP

RO, SUM

Load count into R1.

Load address NUMI into R2.
Clear accumulator RO,

Load next number into R3.
Add number into RO,
Decrement loop counter R1.
Branch back if not done.
Store sum.

Sayilari toplayan programin alt program ¢agrili hali

Calling program

LDR
LDR
BL

STR

Subroutine

LISTADD STMFD

MOV

LOOP LDR
ADD
SUBS
BGT
LDMFD

RI.N

R2, =NUMI
LISTADD
RO, SUM

R13!, [R3, R14}

RO, #0

R3, [R2]. #4
RO, RO, R3

RI, R, #1
LOOP

R13!, [R3, R15}

Save R3 and return address in R14 on
stack, using R13 as the stack pointer.

Restore R3 and load return address
into PC (R15).

{Assume top of stack is at level 1 below.)

Calling program
LDR RO, =NUMI1
STR RO, [R13, #—4]!
LDR RO, N
STR RO, [R13, #—4]!
BL LISTADD
LDR RO, [R13, #4]
STR RO, SUM
ADD RI3, R13, #8
Subroutine
LISTADD STMFD RI3!, {RO-R3, R14}
LDR RI. [R13, #20]
LDR R2, [R13, #24]
MOV RO, #0
LOOP LDR R3, [R2], #4
ADD RO, RO, R3
SUBS RI.RI. #l]
BGT LOOP
STR RO, [R13, #24]
LDMFD RI3!, [RO-R3,R15}

Push NUM1
on stack.
Push n
on stack.

Move the sum into
memory location SUM.

Remove parameters from stack.

Save registers.
Load parameters
from stack.

Place sum on stack.
Restore registers and return.

Ref. [1]

Level 3 —a

[RO]

[R1]

[R2]

[R3]

Return address

Level 2 —

n

NUMI

Level]| —a

parametreleri

Ayni
programin

yigina
aktarilan bir
alt rutinle
gerceklenen
sekli

Ref. [1]

BILECIK SEYH
UNIVERS

EBAL

E i
I TESI]

D
T

ARM iSLEMCIiLi PROGRAM ORNEKLERI

Memory
location

Instructions

Comments

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

Main program

2000 LDR

RI0, PARAM2
2004 STR R10, [SP, #—4]!
2008 LDR RI10, PARAMI
2012 STR R10, [SP, #—4]!
2016 BL SUBI
2020 LDR R10, [SP]
2024 STR R10, RESULT
2028 ADD SP, SP, #8
2032 next instruction

First subroutine

2100 SUB1 STMFD
2104 ADD
2108 LDR
2112 LDR
LDR
STR
2160 BL
2164 LDR
STR
LDMFD

Second subroutine

3000 SUB2 STMFD
ADD

LDR
STR

LDMFD
Ref. [1]

SP!, {RO-R3,FP, LR}
FP. SP. #16

RO, [FP, #8]

RI1, [FP, #12]

R2, PARAM3
RZ, [SP. #-4]!
SUB2

R2, [SP]. #4

R3, [FP, #8]
SP!, {RO-R3, FP, PC}

SPL {RO.RI1. FP. LR}
FP, SP, #8
RO, [FP. #8]

R1, [FP, #8]
SP!, {RO, RI, FP, PC}

i¢-ie alt rutinler

Place parameters on stack.

Store SUB1 result.

Remove parameters from stack.

Save registers.
Load frame pointer.
Load parameters.

Place parameter on stack.

Pop SUB2 result into R2.

Place result on stack.

Restore registers and return.

Save registers.
Load frame pointer.
Load parameter.

Place result on stack.

Restore registers and return.

~
|R0O] from SUB 1
|R1] from SUB1 Stack
FP —= [EP] from SUB1 f';”"c
or
2164 SUB2
param3
<
[RO] from Main
[R1] from Main
[R2] from Main
Stack
[R3] from Main frame
N . for
FP ;
—_— [FP] from Main SUBL
2020
param |
param2
-~
-— Old TOS
Sembolik
Makine Dili
(Assembly)
Programi

Ref. [1]

I¢-ige rutinler
icin y1gin
cerceveleri

Memory Addressing
address or data
label Operation information
Assembler directives AREA CODE
ENTRY
Statements that LDR RI,N
penerate LDR R2, POINTER
machine MOV RO, #0
instructions LOOP LDR R3, [R2], #4
ADD RO, RO, R3
SUBS RI1, RIL, #1
BGT LOOP
STR RO, SUM
Assembler directives AREA DATA
SUM DCD 0
N DCD 5
POINTER DCD NUMI
NUMI DCD 3, 17,27, -12,322
END

BILECIK SEYH
UNIVERS

EBAL

E i
I TESI]

D
T

ARM iSLEMCIiLi PROGRAM ORNEKLERI

2025-26 GYY DERSI
BM303
BIiLGISAYAR
MIMARISi ve
ORGANIZASYONU
Prof. Dr. A. Akbasg

ENG. TERMINOLOGY
& ACRONYMS

READ LDRB R3, [RI, #4]
TST R3,#2
BEQ READ
LDRB R3,[RI]
STRB R3,[ROJ#1
ECHO LDRB R4, [R2, #4]
TST R4, #4
BEQ ECHO
STRB R3.[R2]
TEQ R3, #CR
BNE READ

Load KBD_STATUS byte and
wait for character.

Read the character and
store it in memory.

Load DISP_STATUS byte and
wait for display

Bir karakter satirini okuyan

ve goriintiileyen
program

LDR R1, =AVEC R1 points to vector A.
LDR R2, =BVEC R2 points to vector B.
LDR R3, N R3 is the loop counter.
MOV RO, #0 RO accumulates the dot product.
LOOP LDR R4, [R1], #4 Load A component.
LDR R5. [R2]. #4 Load B component. iki
MLA RO,R4,R5 RO Multiply cnmponems and vektorii
accumulate into RO, kal
SUBS R3, R3 #l Decrement the counter. Shellss
BGT LOOP Branch back if not done. ¢arpan
STR R0, DOTPROD Store dot product. program
Karakter LDR R2, =T Load address T into R2.
SIS LDR R3, =P Load address P into R3.
Dizisi LDR R4, N Get the value n.
(string) LDR R5 M Get the value m.
Arama SUB R4, R4, R5 Compute 1 — m.
ADD R4, R2, R4 R4 is the address of T(n—m).
Programi ADD RS5,R3,R5 RS is the address of P (m).
LOOFP1 MOV R6,R2 Use R6 to scan through string T'.
MOV R7,R3 Use R7 to scan through string P.
LOOP2 LDRB RS, [R6],#1 Compare a pair of
LDRB R9 [R7], #] characters in
CMP RE, R9 strings T and P.
BNE NOMATCH
CMP RS, R7 Check if at P (m).
BGT LOOP2 Loop again if not done.
STR R2, RESULT Store the address of T(i).
B DONE
NOMATCH ADD R2, R2, #] Point to next character in T,
CMP R4, R2 Check if at T{(n—m).
BGE LOOPI Loop again if not done.
MOV RE, #-1 No match was found.
STR R&, RESULT
DONE next instruction
Ref. [1]

Klavyeden girilen
bir satiri kesme ile
okuyan ve
yoklama
yontemiyle ¢ikisa
aktaran program

Ref. [1]

to be ready.
Send|
If no
re; Interrupt-service routine

IRQLOC STMFD RI13! {R2.R3} Save R2 and R3 on the stack.
LDR R2, PNTR Load address pointer.
LDRB R3, KBD_DATA Read character from keyboard.
STRB R3, [R2], #1 Write character into memory

and increment pointer.

STR R2, PNTR Update pointer in memory.

ECHO LDRB R2, DISP_STATUS Wait for display to be ready.
TST R2, #4
BEQ ECHO
STRB R3, DISP_DATA Send character to display.
CMP R3, #CR Check if character is Carriage Return
BNE RTRN and return if not CR.
MOV R2, #1 If CR., indicate end of line.
STR R2, EOL
MOV R2, #0 Disable interrupts in
STRB R2, KBD_CONT keyboard interface.

RTRN LDMFD RI13!, {R2,R3} Restore registers
SUBS R15 R4, #4 and return from interrupt.

Main program
LDR R2, =LINE Initialize buffer pointer.
STR R2, PNTR
MOV R2, #0 Clear end-of-line indicator.
STR R2, EOL
MOV R2, #2 Enable interrupts in keyboard interface.
STRB R2, KBD_CONT
MOV R2, #&50 Enable IR() interrupts
MSR CPSR, R2 and switch to User mode.
next instruction

REFERANSLAR
i

BILECIK SEYH EDEBALI
UNIVERSITESI

2025-26 GYY DERS| 1- Hamacher, C., Vranesic, Z., Zaky, S. and Manjikian, N. (2012). Computer
Bi_?gs?;?(ik Organization and Embedded Systems. McGraw Hill, New York.
ORGANIZASYONU ISBN 978—0-07-338065-0

Prof. Dr. A. Akbasg

2- Bryant, R.E. and O’Hallaron, D.R. (2016). Computer Systems, A Programmer’s
| Perspective. Pearson Education Limited, Malaysia. ISBN 10: 1-292-10176-8

1l 3- Mono, M.M. (2001). Bilgisayar Sistem Mimarisi. Literatlr Yayinlari, istanbul.
ISBN 975-843-31-5

4- Stallings, W. (2005). Computer Organisation and Architecture, Designing for
Performance. Pearson, Prentice Hall, NJ. ISBN 0-13-607373-5

5- Abd-El-Barr, M. and El-Rewini, H. (2005). Fundamentals of Computer
Organization and Architecture. Wiley-Interscience, Hoboken-New Jersy.
ISBN 0-471-46741-3

6- Reynolds, C. and Tymann, P. (2008). Principles of Computer Science. McGraw-Hill
Schaum’s Outline Series, New York. 0-07-151037-0

7- v.b internet siteleri

Kaynaklar

https://www.wikipedia.com/

(1L L) 2111k
aee iREREN’
A LLLLY /A
ALLLLIT |
ERREEN))
AR R R
seseens))

TITIIL .
TTITIIL S
TITITL
TITIILL
TITLLEXTT AN
5 " _‘4”
. 1 RN
, X
J, - »uwu -
-+
- &
t -
1Y F 4

ssssnas /7. ?’z
T T Y/ .
T TTTY/ZI 1T

-~

e

eSS EEPEESESEESEERE RN E SRS

DERSININ SONU

=
LL
<
L
‘=
O
<
<
—

https://translate.google.com/?um=1&ie=UTF-8&hl=en&client=tw-ob#auto/en/Gereksinimleri%20belirlemeye%20y%C3%B6nelik%20olarak%20bir%20sistemi,%20s%C4%B0stem%20par%C3%A7as%C4%B1n%C4%B1%20ya%20da%20s%C3%BCreci%20analiz%20eder,%20alternatifleri%20m%C3%BChendislik%20y%C3%B6ntemlerini%20kullanarak%20k%C4%B1yaslar,%20en%20uygun%20%C3%A7%C3%B6z%C3%BCm%C3%BC%20tasarlar.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

